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1. Introduction 
 

This document provides a detailed description of the design and usage of the libFCL. It includes 

an overview of the various components of the library, installation instructions and a sample run 

using provided toy data along with toolbox. The intended audience is users and developers of 

the libFCL. The document assumes that the user is familiar with MATLAB and has a grasp on 

Multi-Voxel Pattern Analysis (MVPA) methods using functional Magnetic Resonance Imaging 

(fMRI) data. 

The libFCL is a library of research code initially developed to support the Pattern Analysis of 

Functional Magnetic Resonance Imaging Project (http://neuro.ceng.metu.edu.tr) accomplished 

by the collaboration of Department of Computer Engineering - Middle East Technical University 

and Department of Psychology - Koç University. The libFCL is a new MVPA toolbox for brain 

state classification, functional connectivity and feature analysis. 

The library is developed and tested under 64-bit Windows environment using MATLAB 

7.11.0.584 (R2010b) and is actually a collection of software libraries (see Appendix A) some of 

which are third-party open source projects including Functional Connectivity Toolbox, 

Parallel Spectral Clustering, libSVM. We have released the library under the BSD license (see 

Appendix B).  

Developed by Orhan Fırat,  

Department of Computer Engineering,  

Middle East Technical University, Turkey 

Contact information: 

orhan.firat@ceng.metu.edu.tr 

 

 

  

http://neuro.ceng.metu.edu.tr/
orhan.firat@ceng.metu.edu.tr
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2. Installation 
 

I. Download the toolbox archive file (libFCL.rar) and unzip it to anywhere in your file 

system (ex: ‘C:/libFCL/’). 

 

II. Run MATLAB. Either, 

 

 Add libFCL path to MATLAB search path manually: 

Type  

>>addpath('C:/libFCL/'); 

 

means the path of libFCL on the machine 

or 

 Go to the folder where you extracted the libFCL using MATLAB “current folder” 

browser. 

 

III. Call script start_libFCL.m to start libFCL, 

Type 

>>start_libFCL; 

 

This script automatically adds all the folders under the libFCL directory to the 

MATLAB path and calls the opening figure of toolbox (see Figure 1 Starting the 

libFCL below).  

 

Figure 1 Starting the libFCL 

http://neuro.ceng.metu.edu.tr/fmri_prj/codes/libFCL.rar
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3. Algorithm Overview 
 

After successfully starting libFCL, an opening panel will popup. The libFCL consists of five 

consecutive panels that you start with loading data and corresponding labels and completing a 

classification task in the fifth step.  

The very first panel of the libFCL is the data loading panel. In data loading panel, training data, 

class labels for training data, test data and class labels for test data is expected to be loaded.  

The second panel of the libFCL is the clustering panel where user is expected to load 3D-voxel 

locations file and partition the region of interest into a predefined number of clusters. 

Functional connectivity is calculated in the third panel of the libFCL. This step calculates 

functional connectivity within clusters if conducted in the second step or assumes all the voxels 

in the region of interest form a huge cluster and calculates functional connectivity within one 

cluster. 

Local Relational Features (LRF) or Functional Connectivity Aware Local Relational Features (FC-

LRF) (if functional connectivity is pre-calculated in the third step) are extracted in the fourth 

step using training and test data loaded in the first step. The libFCL uses linear prediction filter 

coefficients (lpc) function of the MATLAB-Signal Processing Toolbox in order to determine the 

coefficients of a forward linear predictor by minimizing the prediction error in the least squares 

sense.  Therefore, make sure Signal Processing Toolbox is available in your MATLAB. 

The final step of the libFCL is the classification step using features extracted in the fourth step. 

Two well-known classification methods are provided for the use via toolbox namely, Support 

Vector Machine (using libSVM implementation) and k-nearest neighbors (using MATLAB-

Bioinformatics Toolbox).  

The major transition pattern of the libFCL is illustrated in Figure 2 Panel Transition Pattern of 

libFCL below and also the current step of the algorithm is indicated as a top frame banner in 

each panel during execution. Transition between panels is done by the  and  

buttons on the bottom-right of each panel.  

 

Figure 2 Panel Transition Pattern of libFCL 

It is also possible to reset the current list, radio button or check box selections by using 

button on the bottom-right. 

Each panel has an algorithm description text-box as the right-most column frame which explains 

the current step and panel usage.   

Step 1:  
Load Data

Step 2: 
Clustering

Step 3: 
Functional 

Connectivity

Step 4: 
Extract 

LRF/FC-LRF

Step 5: 
Classification
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Step 1: Load Data 
 

The first panel of the libFCL is data definition panel for the overall algorithm. This panel consists 

of three frame columns, input data and labels loading boxes on the left, input data description 

boxes in the middle and algorithm description box on the right (see Figure 3 Load Data Panel of 

libFCL below).   

 

Figure 3 Load Data Panel of libFCL 

User has to specify training data and corresponding class labels files. Training data must be a 

matrix of 𝑁𝑥𝑀 or 𝑁𝑥𝑀 where 𝑁 is the total number of time steps and 𝑀 is the total number of 

voxels in the region of interest. The class labels can be specified in two different ways, first by an 

𝑁𝑥𝐶 matrix where 𝐶 is the number of classes. When the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column is 1 that states 

𝑖𝑡ℎ  time point is in 𝑗𝑡ℎ  class and the rest of the 𝑖𝑡ℎ  row is all zero. The second format for class 

labels is using a 𝑁𝑥1 vector representation where each non-zero element of the vector indicates 

the corresponding class label. User can transpose data matrices by using radio buttons to 

indicate samples are distributed either in the rows or in the columns. For details of the data 

representations user may find it informative to examine sample data provided with the toolbox 

under the folder “libFCL/data/”. 

The middle frame consists of two description boxes that are designed to inform user about how 

libFCL translates the inputs and/or selections on the left frame column. User do not have to 

specify test data and test labels but for training.  

  

I II III 
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Step 2: Clustering 
 

The second panel of the libFCL is the clustering panel. Clustering is basically the task of 

assigning a set of objects (voxels in our case) into groups (called clusters) so that the objects in 

the same cluster are more similar (anatomically closer in our case) to each other than to those in 

other clusters. The main advantage of clustering the region of interest along anatomical 

locations is relaxation of the computational cost of functional connectivity which will be 

conducted in the third step. The clustering provided in the toolbox is a generic clustering 

algorithm and is not enforced by the overall algorithm. User can also load a pre-defined 

clustering result by using  button, in which loaded clustering file may indicate functional 

clusters or anatomical region of interests that groups voxels (see Figure 4 Clustering Data Panel 

of libFCLbelow).    

 

Figure 4 Clustering Data Panel of libFCL 

This panel also consists of three frame columns, voxel positions loading and clustering 

parameters on the left, input data description box and clustering results list in the middle and 

algorithm description box on the right. User should take into account that the time required by 

the clustering algorithm grows rapidly as the number of voxels increases, though provided 

clustering algorithm is tested up to 80.000 voxels. 

In order to make it possible to use clustering results in the future, middle panel allows user to 

save clustering results to disk by using  button in the middle frame below clustering 

results list. The selected clustering results will be carried to and further used in the next panel 

(step 3). Note that “Clustering Results” list allows user to select multiple clustering results.  
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Step 3: Functional Connectivity Analysis 
 

The third panel of the libFCL is the within-cluster functional connectivity analysis panel. 

Functional connectivity captures deviations from statistical independence between distributed 

and often spatially remote neuronal units (voxels in our case). Statistical dependence may be 

estimated by measuring correlation or covariance. The libFCL provides three correlation 

variants as a measure of connectivity, namely, pearson correlation, peak correlation and scan 

correlation. User may refer to the Functional Connectivity Toolbox for details of the provided 

correlation measures.  

 

Figure 5 Functional Connectivity Analysis Panel of libFCL 

This step is also not enforced by the overall algorithm. If no functional connectivity is calculated 

in the third step then the nearest neighbor selection in the fourth step will be conducted 

according to the voxel positions provided in the second step.  

Different from the first two panels, middle frame of the third panel comprises two lists 

“Clustering Results” list on the left functions as input list and “Functional Connectivity Results” 

list on the right functions as output list. This structure allows user to analyze several inputs by 

either loading from file or calculating in the previous step and obtaining corresponding outputs 

for functional connectivity all compactly in a single panel. Resulting functional connectivity 

matrices will be carried to the fourth step if they are selected in the “Functional Connectivity 

Results” list. Note that “Functional Connectivity Results” list also allows multiple selections (see 

Figure 5 Functional Connectivity Analysis Panel of libFCL above).   

Inputs Outputs 
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The disabled buttons and their functionalities are expected to be available in the future versions 

of libFCL. A new button is introduced in this panel which clears the list when clicked. User 

should be aware of deleting unsaved results may cause recalculating corresponding results.  

 

Step 4: Extract LRF / FC-LRF 
 

Feature extraction is one the most important step in the classification tasks and the fourth step 

of libFCL completes is responsible for feature extraction. User may select three different 

features, LRF, FC-LRF using positive correlation and FC-LRF using negative correlation. In order 

to extract LRF user is expected to load voxel positions in the second step and for FC-LRF options 

user is expected to calculate functional connectivity in the third step.       

 

Figure 6 Feature Extraction Panel of libFCL 

Similar to the convention of third panel, middle frame comprises lists “Functional Connectivity 

Results” list on the left functions as an input list and “FC-LRF Results (training) / (test)” lists on 

the right functions as output lists. Features are extracted according to the loaded data for 

training and test in the first panel of libFCL. Note that loading test data and labels is optional in 

the first panel and therefore determines the extraction of test features in feature extraction step. 

LRF Order parameter on the left frame column, determines the size of a mesh formed around 

each voxel and must be between 1 and minimum number of voxels in all clusters. The disabled 

buttons and their functionalities are expected to be available in the future versions of libFCL. 

User is provided with the same load, save and clear operations for the input/output lists also 

multiple selections are allowed for the output lists to transfer feature extraction results to the 

final step, the “Classification” step, of the libFCL.       
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Step 5: Classification 
 

The libFCL encapsulates two well known classification methods, k-nearest neighbor and 

support vector machine. When user selects training data to train a classifier and test data in 

order to generalization test, and clicks the run button corresponding parameter menu for 

selected classifier will popup. After specifying classifier parameters (or leaving it as default) 

popup menu will close and classifier runs.  

Results of the classification are summarized in the “Status Summary” box. Performance 

measures used by libFCL are precision, recall and f-score. User can also visualize the 

classification results on a confusion matrix by clicking the corresponding button in the 

“Performance Results” box. Save button at the bottom right of this box is also allows user to save 

class labels predicted by the classifier to the disk. 

 

Figure 7 Classification Panel of libFCL 

User is encouraged to tune parameters of classifiers by providing training and cross validation 

sets to “training features” list and “test features” list respectively before actually loading test 

features, as a best practice in machine learning. The disabled buttons and their functionalities 

are expected to be available in the future versions of libFCL.  

Note that SVM option of libFCL uses libSVM library, provided SVM mex files are compiled under 

a 64-bit Windows environment, Linux or MAC-OS users should compile corresponding mex files 

under ‘/libFCL/FCL_Classification/libsvm/matlab/’ directory or just type following line on 

libFCL root:  

>> run('C:\libFCL\FCL_Classification\libsvm\matlab\make.m') 
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4. Sample Run 
 

After installing and starting libFCL user is introduced with the first panel, data loading panel. 

libFCL provides a sample data located under directory “libFCL/data/”. Data for training and test 

along with class labels are loaded using this panel (see Figure 8 Loading Sample Data below). 

 

Figure 8 Loading Sample Data 

After successfully loading provided training and test data along with corresponding class labels, 

user has to check middle column for libFCL translation. Provided data samples are distributed in 

matrix rows therefore “Matrix rows” radio button must be selected for both training and test 

data matrices (see Figure 3 Load Data Panel of libFCL above). Clicking next button ignites 

several validations and user is prompted with warnings or errors when loading data is not 

successful.  

Second panel of libFCL will be opened when all validations checks were successful. The libFCL 

waits loading voxel position file and specifying cluster number. This step is conducted same as 

the first step, provided “sample_vXYZ.mat” should be selected for loading. Set number of clusters 

as 8 and click run. Successful completion of clustering will be prompted with a dialog popup and 

result of the clustering will be loaded to the “Clustering Results” list (see Figure 9 Clustering 

Region of Interest Using Sample Voxel Positions below). File name of clustering result indicates 

number of voxels in the region of interest as N_* and number of clusters C_*. For example 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑎𝑏𝑒𝑙𝑠_𝑁_500_𝐶_8 means that number of voxels is 500 and number of cluster is 8.  

1 

2 

3 
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Figure 9 Clustering Region of Interest Using Sample Voxel Positions 

User may repeat this procedure multiple times with differing number of clusters and select 

multiple clustering results then click next button to transfer results for connectivity analysis.  

After clicking next button Functional Connectivity Analysis panel will be opened and selected 

clustering results are transferred to the input list (Clustering Results list) of the third panel. In 

order to initiate a functional connectivity analysis, first select the clustering result from the 

“Clustering Results” list, then choose correlation measure and click run. If all the input 

validations are accomplished connectivity algorithm will start and user will be prompted the 

successful completion of functional connectivity analysis routines. The result of the functional 

connectivity analysis will be loaded into the “Functional Connectivity Results” list. File name of 

functional connectivity result indicates number of voxels in the region of interest as 𝑁_ ∗ , 

number of clusters 𝐶_ ∗, correlation measure 𝑀_ ∗ and a trailing _𝐴𝐿𝐿 indicating connectivity 

matrix is calculated using time steps from all classes. For example 𝑓𝑐_𝑁_500_𝐶_8_𝑀_𝑃𝐸𝐴𝑅_𝐴𝐿𝐿 

means that number of voxels is 500, number of cluster is 8, correlation measure used is pearson 

correlation and connectivity matrix is calculated using time steps from all classes. 

The functional connectivity analysis will be followed by feature extraction. Click next in order to 

start feature extraction.  

1 

2 

3 
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Figure 10 Calculating Functional Connectivity using Sample Data 

The feature extraction panel will be started with “Functional Connectivity Results” list is filled 

with the selected functional connectivity analysis results in the previous step. In order to extract 

features for training and test first choose one the functional connectivity results, then select one 

of the nearest neighbor selection algorithm, set LRF order a non-zero integer and click run 

button. When all the input validations are accomplished feature extraction algorithm will start 

and user will be prompted the successful completion. The result of the extracted features will be 

loaded into the “FC-LRF Results (Training)” and “FC-LRF Results (Test)” lists. Repeat this 

process by changing LRF order, nearest neighbor selection algorithm and input functional 

connectivity results and transfer selected features to the classification panel. Note that when 

using LRF as nearest neighbor selection algorithm, libFCL does not use functional connectivity 

results or clustering results, it selects nearest neighbor only considering the Euclidean distance 

between voxels. Therefore resulting feature filenames will have cluster number as one. File 

name of extracted features indicate number of voxels in the region of interest as 𝑁_ ∗ , number of 

clusters 𝐶_ ∗, correlation measure _𝑁𝑂𝑁𝐸_ for raw LRF, 𝑃𝐸𝐴𝑅_𝐴𝐿𝐿 for pearson correlation, 

𝑃𝐸𝐴𝐾_𝐴𝐿𝐿 for peak correlation, 𝑆𝐶𝐴𝑁_𝐴𝐿𝐿 for scan correlation, LRF order 𝑃_ ∗ and nearest 

neighbor selection algorithm 𝑁𝑁_𝐿𝑅𝐹 for raw 𝐿𝑅𝐹, 𝑁𝑁_𝑃𝑂𝑆 for positive correlation based 

neighbor selection, 𝑁𝑁_𝑁𝐸𝐺 for negative correlation based neighbor selection. For example 

𝐴_𝑇𝑅_𝑁_500_𝐶_8_𝑀_𝑃𝐸𝐴𝑅_𝐴𝐿𝐿_𝑃_4_𝑁𝑁_𝑃𝑂𝑆 means that number of voxels is 500, number of 

cluster is 8, correlation measure used is pearson correlation and connectivity matrix is 

calculated using time steps from all classes, FC-LRF order is 4 and nearest neighbor is selected 

using positive correlation (see Figure 11 Feature Extraction Using Sample Data below). 

1 
2 

3 
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Figure 11 Feature Extraction Using Sample Data 

 

Selecting extracted features and clicking next button will open up the final panel of the libFCL 

where “Training Features” and “Test Features” lists are loaded with features selected in the 

previous step. In order to conduct a classification task first select one item from the “Training 

Features” list and one item from “Test Features” list, then choose a classifier and click run. User 

will be prompted to enter classifier specific parameters, use them as default and click run (see 

Figure 12 Classification Using Sample Data below).  

The results will be updated in the “Status Summary” box with performance measures as 

precision, recall and f-score. Clicking the “Confusion Matrix” button draws the confusion matrix 

for the current classification result.  

The finish button closes the figure and exits the libFCL. 

1 

2 

3 

4 
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Figure 12 Classification Using Sample Data 

  

1 

1 

2 

3 



16 

 

A. Acknowledgements 
 

We thank the developers of the following softwares and toolboxes whose source code or file 

formats were referenced during our package development: 

MATLAB:  

http://www.mathworks.com/products/matlab/ 

Functional Connectivity Toolbox:  

https://sites.google.com/site/functionalconnectivitytoolbox/ 

libSVM:  

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

Parallel Spectral Clustering:  

http://alumni.cs.ucsb.edu/~wychen/sc.html  

 

 

 

This work was partially supported by the Science and Technological Research Council of Turkey 

(TÜBİTAK).  

http://www.mathworks.com/products/matlab/
https://sites.google.com/site/functionalconnectivitytoolbox/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://alumni.cs.ucsb.edu/~wychen/sc.html


17 

 

B. License 
 

Copyright (c) 2012, Orhan FIRAT 
All rights reserved. 

  
Redistribution and use in source and binary forms, with or without  
modification, are permitted provided that the following conditions are  
met: 

  
    * Redistributions of source code must retain the above copyright  
      notice, this list of conditions and the following disclaimer. 
    * Redistributions in binary form must reproduce the above copyright  
      notice, this list of conditions and the following disclaimer in  
      the documentation and/or other materials provided with the distribution 
    * Neither the name of Middle East Technical University and Koç University 
      nor the names of its contributors may be used to endorse or promote 
      products derived from this software without specific prior written 
      permission. 

       
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE  
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR  
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF  
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS  
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN  
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)  
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGE. 

 


