libFCL (v1.0)

A new MVPA toolbox for brain state classification,
functional connectivity and feature analysis.

Orhan Firat
orhan.firat@ceng.metu.edu.tr

November 26, 2012

Contents

Lo DT OAUCHION . cttteeereeereeeeeeseess sttt eseee b e s b s bR R RS R R R 3
2. INSEAIIATION woeuiteereiecereieeseeet et s bbb AR AR R 4
3. AlGOTITNIN OVEIVIEW ..ceeieeieeeeeseeeeeesseeseessessssessesssesssess s s s sssess s sssess e s e s e sess s sssssesssssssessasesasessnes 5
STEP 1: LOAA DAtA.uiiiiiiiiisiissisiiesissessesessssses st sssss s st ssssssssssssssssssssssssssss s st s st s ssnssssasssnssneas 6
=] 0/ O LU =) o VTP 7
Step 3: Functional CoNNectivity ANALYSIScociereereererneesrersesseesesssessssssessessessesssessesssesssssssssssssessssssssessesssesas 8
Step 4: EXtract LRE / FC-LRF st ssssssssssssssssssssssssssssssssssssanes 9
=] oI 00 T 1T U o) o PP 10
4. SAMPIE RUN ottt et s 11
A, ACKNOWIEAGEIMENLS ..coveereeseeereessees e seeeseesssesees s sess s sess s s s s s s n e n e 16
2 R 1) (= - T 17

1. Introduction

This document provides a detailed description of the design and usage of the libFCL. It includes
an overview of the various components of the library, installation instructions and a sample run
using provided toy data along with toolbox. The intended audience is users and developers of
the libFCL. The document assumes that the user is familiar with MATLAB and has a grasp on
Multi-Voxel Pattern Analysis (MVPA) methods using functional Magnetic Resonance Imaging
(fMRI) data.

The libFCL is a library of research code initially developed to support the Pattern Analysis of
Functional Magnetic Resonance Imaging Project (http://neuro.ceng.metu.edu.tr) accomplished
by the collaboration of Department of Computer Engineering - Middle East Technical University
and Department of Psychology - Ko¢ University. The libFCL is a new MVPA toolbox for brain
state classification, functional connectivity and feature analysis.

The library is developed and tested under 64-bit Windows environment using MATLAB
7.11.0.584 (R2010b) and is actually a collection of software libraries (see Appendix A) some of
which are third-party open source projects including Functional Connectivity Toolbox,
Parallel Spectral Clustering, libSVM. We have released the library under the BSD license (see
Appendix B).

Developed by Orhan Firat,
Department of Computer Engineering,
Middle East Technical University, Turkey

Contact information:
orhan.firat@ceng.metu.edu.tr

http://neuro.ceng.metu.edu.tr/
orhan.firat@ceng.metu.edu.tr

2. Installation

I. Download the toolbox archive file (libFCL.rar) and unzip it to anywhere in your file
system (ex: ‘C:/libFCL/").

I1. Run MATLAB. Either,

e AddlibFCL path to MATLAB search path manually:
Type
>>addpath ('C:/1ibFCL/");
means the path of libFCL on the machine

or

e Go to the folder where you extracted the libFCL using MATLAB “current folder”
browser.

I11. Call script start_libFCL.m to start libFCL,

Type
>>start 1ibFCL;
This script automatically adds all the folders under the libFCL directory to the

MATLAB path and calls the opening figure of toolbox (see Figure 1 Starting the
libFCL below).

\ MATLAE 7.11.0 (R2010kb
File Edit Debug Parallel Desktop Window Help

NS¢ wE9 | @ 2| @ | CurentFolder ClibFCL FEEE

Current Foldsr w ot % [CommandWindow]

! C: » libFCL » - 0 E - @Newtn MATLAB? Watch this Video, see Demos, or read Getting J
Marne -

MATLAE desktop kevboard shortcuts, such as Ctrli
In addition, many keyboard shortcuts have changdg
acro3s the desktop.

data
FCL_Classification
FCL_Clustering

HEHEEEEE

EE::_:::(?[E‘F To customize keyboard shortcuts, use Freferenced
FCL_FCT - restore previous default settings by following
libFCL P ; ;

I Click here if you do not want to see this messad

ibFCL_Manual.pdf

; = fx 5>
'

Figure 1 Starting the libFCL

4

http://neuro.ceng.metu.edu.tr/fmri_prj/codes/libFCL.rar

3. Algorithm Overview

After successfully starting libFCL, an opening panel will popup. The libFCL consists of five
consecutive panels that you start with loading data and corresponding labels and completing a
classification task in the fifth step.

The very first panel of the libFCL is the data loading panel. In data loading panel, training data,
class labels for training data, test data and class labels for test data is expected to be loaded.

The second panel of the libFCL is the clustering panel where user is expected to load 3D-voxel
locations file and partition the region of interest into a predefined number of clusters.

Functional connectivity is calculated in the third panel of the libFCL. This step calculates
functional connectivity within clusters if conducted in the second step or assumes all the voxels
in the region of interest form a huge cluster and calculates functional connectivity within one
cluster.

Local Relational Features (LRF) or Functional Connectivity Aware Local Relational Features (FC-
LRF) (if functional connectivity is pre-calculated in the third step) are extracted in the fourth
step using training and test data loaded in the first step. The libFCL uses linear prediction filter
coefficients (Ipc) function of the MATLAB-Signal Processing Toolbox in order to determine the
coefficients of a forward linear predictor by minimizing the prediction error in the least squares
sense. Therefore, make sure Signal Processing Toolbox is available in your MATLAB.

The final step of the libFCL is the classification step using features extracted in the fourth step.
Two well-known classification methods are provided for the use via toolbox namely, Support
Vector Machine (using libSVM implementation) and k-nearest neighbors (using MATLAB-
Bioinformatics Toolbox).

The major transition pattern of the libFCL is illustrated in Figure 2 Panel Transition Pattern of
libFCL below and also the current step of the algorithm is indicated as a top frame banner in
each panel during execution. Transition between panels is done by the Prev and Next
buttons on the bottom-right of each panel.

. | . Step 3: Step 4: .
L(?::Sngta Cligigrziﬁg AT IHAI0F DAl Clas?sfiefli)cg'.cion
‘ . Connectivity | LRF/FC-LRF

Figure 2 Panel Transition Pattern of libFCL

It is also possible to reset the current list, radio button or check box selections by using Reset
button on the bottom-right.

Each panel has an algorithm description text-box as the right-most column frame which explains
the current step and panel usage.

Step 1: Load Data

The first panel of the libFCL is data definition panel for the overall algorithm. This panel consists
of three frame columns, input data and labels loading boxes on the left, input data description
boxes in the middle and algorithm description box on the right (see Figure 3 Load Data Panel of
libFCL below).

B libFCL =NACE X

148,
’

Load Data

QD&L& & Labels for Training — Training Data Descriptions ———— —/Algorithm Descriptioni\-

We propose a statistical learning model for -
classifying cognitive processes bazed on

Input training data matrix :

] Input training data conzizts of 48 voxels distributed patterns of neural activation in the
le_tr_dat;
sample_tr_data ad :] wiith 500 timesteps. brain, acquired via functional magnetic
Samples are: (O Matrix columns @) Matrix rows RIS EE L

m

In the proposed learning machine, local
meshes are formed around each voxel. The

Training labels consist of 2 classes for distance between voxels in the mesh is

sample_tr_labels x| :] 43 timesteps. determi?ed by using functional neighborhood
concept.

Input training labels :

In order to define functional neighborhood,
— Input Data & Labels for Testing — Test Data Descriptions ——M the similarities between the time series
recorded for voxels are measured and
functional connectivity matrices are

Input test data consists of 500 voxels constructed.

wiith 48 timesteps.

Input test data matrix :

]

sample_te_data >

Then, the local mesh for each voxel is formed

by including the functionally clozest

neighboring voxels in the mesh. The:

relationship between the voxels within a -

Samples are: (O Matrix columns @) Matrix rows

Input training labels :

1 Test labels consist of 2 classes for 48
sample_te_labels 7 [:] timesteps.
) K:--e [Next] l Reset l
I 1L 11X
1 11 111

Figure 3 Load Data Panel of libFCL

User has to specify training data and corresponding class labels files. Training data must be a
matrix of NxM or NxM where N is the total number of time steps and M is the total number of
voxels in the region of interest. The class labels can be specified in two different ways, first by an
NxC matrix where C is the number of classes. When the i*" row and j®* column is 1 that states
ith time point is in jt" class and the rest of the i!" row is all zero. The second format for class
labels is using a Nx1 vector representation where each non-zero element of the vector indicates
the corresponding class label. User can transpose data matrices by using radio buttons to
indicate samples are distributed either in the rows or in the columns. For details of the data
representations user may find it informative to examine sample data provided with the toolbox
under the folder “libFCL/data/”.

The middle frame consists of two description boxes that are designed to inform user about how
libFCL translates the inputs and/or selections on the left frame column. User do not have to
specify test data and test labels but for training.

Step 2: Clustering

The second panel of the libFCL is the clustering panel. Clustering is basically the task of
assigning a set of objects (voxels in our case) into groups (called clusters) so that the objects in
the same cluster are more similar (anatomically closer in our case) to each other than to those in
other clusters. The main advantage of clustering the region of interest along anatomical
locations is relaxation of the computational cost of functional connectivity which will be
conducted in the third step. The clustering provided in the toolbox is a generic clustering
algorithm and is not enforced by the overall algorithm. User can also load a pre-defined
clustering result by using i button, in which loaded clustering file may indicate functional
clusters or anatomical region of interests that groups voxels (see Figure 4 Clustering Data Panel
of libFCLbelow).

u FCL_clustering l = et e
: 2
- 4
Clustering
— Cluster ROl along XYZ——————— — Clustering Descriptions — Algorithm Description

Constructing a functional connectivity graph -

Clustering 500 voxels along 3-D XY'Z coordinates into 4 (matrix) by considering all voxels as individual

il Load voxel X¥Z data file :

clusteris) nedes introduces scalabilty problems.
sample_vXYZ v' D In order to reduce the computational
. complexity, the wvoxels are first clustered with
. respect to their locations, where each cluster
— Clustering Results iz called a local patch. =
Mumber of clusters : 4 cluster_labels_N_500_C_1 -

Then, the functional connectivity graph is

I
cluster_labels_N_500_C_2 formed for the voxels in each local patch.

cluster_labels_N_500_C

3
cluster_labels_N_500_C 4 The local patches are constructed by

clustering the whole dataset of voxels, using
Euclidean distance among =spatial locations of
wvoxels in a self-tuning spectral clustering
algorithm.

After partitioning the whole dataset into
clusters, functional connectivity wil be
measured locally within these clusters in the
next step.

aa) [fmd (el

Figure 4 Clustering Data Panel of libFCL

This panel also consists of three frame columns, voxel positions loading and clustering
parameters on the left, input data description box and clustering results list in the middle and
algorithm description box on the right. User should take into account that the time required by
the clustering algorithm grows rapidly as the number of voxels increases, though provided
clustering algorithm is tested up to 80.000 voxels.

In order to make it possible to use clustering results in the future, middle panel allows user to
save clustering results to disk by using & button in the middle frame below clustering
results list. The selected clustering results will be carried to and further used in the next panel
(step 3). Note that “Clustering Results” list allows user to select multiple clustering results.

7

Step 3: Functional Connectivity Analysis

The third panel of the IibFCL is the within-cluster functional connectivity analysis panel.
Functional connectivity captures deviations from statistical independence between distributed
and often spatially remote neuronal units (voxels in our case). Statistical dependence may be
estimated by measuring correlation or covariance. The libFCL provides three correlation
variants as a measure of connectivity, namely, pearson correlation, peak correlation and scan
correlation. User may refer to the Functional Connectivity Toolbox for details of the provided
correlation measures.

= S |

rl] FCL_FCA

Connectivity

— Calculate Functional Conn. (FC)—
— FC Matrix

Functional Connectivity Descriptions

Calculating connectivity matrix FOR ALL CLASSES using PEARSON correlation as
connectivity measure with NO parallelization.

— Algorithm Description
Thiz panel of the libFCL is the -
within-cluster functional connectivity

@) For all classes

For each class

— Connectivity Measure.

Inputs

Outputs

ﬁlstering Results

Functi | Conn. Results

@ Pearson correlation
() Scan correlation

() Peak correlation

— Parallelization
@ None (Serial)
Use Matlab-PCT

Use CUDA

cluster_labelzs_M_500_C_1
cluster_labels_N_500_C_2
cluster_labels_N_500_C_3
cluster_labels N_500_C_4

N

fo_N_500_C_1_M_PEAR_ALL -
fo_N_S00_C_2_M_PEAR_ALL
fo N_500_C_3_M_PEAR_ALL

foc NS00 C 4 M PEAR ALL

\ @

analysis panel.

Functional connectivity captures
deviations from statistical
independence between distributed
and often spatially remote neuronal
units (voxels in our case).

Statistical dependence may be
estimated by measuring correlation or
covariance.

The libFCL provides three correlation
variants as a measure of connectivity,
namely, pearsen correlation, peak
correlation and scan correlation.

If no functional connectivity is
calculated in this step then the
nearest neighbor selection in the

.

Figure 5 Functional Connectivity Analysis Panel of libFCL

This step is also not enforced by the overall algorithm. If no functional connectivity is calculated
in the third step then the nearest neighbor selection in the fourth step will be conducted
according to the voxel positions provided in the second step.

Different from the first two panels, middle frame of the third panel comprises two lists
“Clustering Results” list on the left functions as input list and “Functional Connectivity Results”
list on the right functions as output list. This structure allows user to analyze several inputs by
either loading from file or calculating in the previous step and obtaining corresponding outputs
for functional connectivity all compactly in a single panel. Resulting functional connectivity
matrices will be carried to the fourth step if they are selected in the “Functional Connectivity
Results” list. Note that “Functional Connectivity Results” list also allows multiple selections (see
Figure 5 Functional Connectivity Analysis Panel of libFCL above).

The disabled buttons and their functionalities are expected to be available in the future versions
of libFCL. A new button & is introduced in this panel which clears the list when clicked. User
should be aware of deleting unsaved results may cause recalculating corresponding results.

Step 4: Extract LRF / FC-LRF

Feature extraction is one the most important step in the classification tasks and the fourth step
of libFCL completes is responsible for feature extraction. User may select three different
features, LRF, FC-LRF using positive correlation and FC-LRF using negative correlation. In order
to extract LRF user is expected to load voxel positions in the second step and for FC-LRF options
user is expected to calculate functional connectivity in the third step.

= | |

rl] FCL_FC_LRF

. 4 _
v/ /,
FC-LRF

FC-LRF Descriptions
Extracting FUNCTIONAL CONMNECTIVITY AWARE LOCAL RELATIONAL FEATURES , using
PEARSON correlation as coennectivity measure, NEGATIWE CORRELATION as nearest neighbor
selection method, with an Irf order of 4, number of cluster(s) as 3, number of voxels as 500.

— Calculate FC-LRF — Algorithm Description
We define a local mesh around each -
woxel which consists of the set of
functionally connected voxels. These
meshes are then used to exiract LRF

— Nearest Neighbor Selection——

() None (LRF)

() Positive correlation

(@ Negative correlation

— Functional Conn. Results

— FC-LRF Results (Training)

fc_N_500_C_1_M_PEAR_ALL -
fc N 500 C 2 M _PEAR ALL

fc_N_500_C_3_M_PEAR_ALL

A_TR_N_500_C_1_NONE_P_2_NN_LRF -
A_TR_N_500_C_1_PEAR_ALL_P_2 NN_POS

A_TR_N_500_C_2_PEAR_ALL_P_2_NN_POS

features from the meshes which
consist of functionally similar voxels.

m

The suggested model is called
Functional Mesh Learning and the

STD matrix fo_M_S00_C_4 M_PEAR_ALL A TR_N_S00 C 2 PEAR ALL P 2 NN_NEG
A TR N 500 C 3 PEAR ALL P 4 NN _NEG extracted LRF features are called
ENT matrix Functional Connectivity aware LRF
(FC-LRF). B
LRF Order 4 e User may select three different
H f% features, LRF, FC-LRF using posiive
Threshold [0,1] :] correlation and FC-LRF using negative

— FC-LRF Results (Test)
\A_TE_N_S00_C_1_MONE_P_2_NN_LRF -

|A_TE_N_S00_C_1_PEAR_ALL_P_2_NN_POS
|A_TE_N_500_C_2_PEAR_ALL_P_2_NN_POS

A TE N 500 C 2 PEAR ALL P 2 NN _NEG
A _TE_N_S00 C 3 PEAR ALL P 4 NN _NEG

correlation. In order to extract LRF user

is expected to load voxel positions in

the second step and for FC-LRF

options user is expected to calculate
functional connectivity in the third step. _

))]

H &

Figure 6 Feature Extraction Panel of libFCL

Similar to the convention of third panel, middle frame comprises lists “Functional Connectivity
Results” list on the left functions as an input list and “FC-LRF Results (training) / (test)” lists on
the right functions as output lists. Features are extracted according to the loaded data for
training and test in the first panel of libFCL. Note that loading test data and labels is optional in
the first panel and therefore determines the extraction of test features in feature extraction step.
LRF Order parameter on the left frame column, determines the size of a mesh formed around
each voxel and must be between 1 and minimum number of voxels in all clusters. The disabled
buttons and their functionalities are expected to be available in the future versions of libFCL.

User is provided with the same load, save and clear operations for the input/output lists also
multiple selections are allowed for the output lists to transfer feature extraction results to the
final step, the “Classification” step, of the libFCL.

9

Step 5: Classification

The libFCL encapsulates two well known classification methods, k-nearest neighbor and
support vector machine. When user selects training data to train a classifier and test data in
order to generalization test, and clicks the run button corresponding parameter menu for
selected classifier will popup. After specifying classifier parameters (or leaving it as default)
popup menu will close and classifier runs.

Results of the classification are summarized in the “Status Summary” box. Performance
measures used by libFCL are precision, recall and f-score. User can also visualize the
classification results on a confusion matrix by clicking the corresponding button in the
“Performance Results” box. Save button at the bottom right of this box is also allows user to save
class labels predicted by the classifier to the disk.

/
n FCL_classification =k

. , i 5.4
y/ /4 /4 /), 4

Classification

— CI ificati — Training Feat — Status Summary——— — Algorithm Description
. The libFCL encapsulates two well known -
— Select Classifier————— A TR N 500 C 1 NONE P 2 NN _LRF -
) A TR_N_500_C_1_PEAR ALL P2 NN_POS Classification completed for 2 classes cla:siﬁcat\stn m;lhuds, b;—.nearesl neighbor
@ K-N t Neighbs and support vector machine.
_ earest Neighbors 2_PEAR_ALL_P_Z_NM_POS Recall - 0.9375

2_PEAR_ALL_P_2_NN_NEG e

@ Support Vector Machine _TR_N_500_C_3_PEAR_ALL_P_4_NN_NEG e RIEE When user selects training data to train a

classifier and test data in order to
generalization test, and clicks the run button
corresponding parameter menu for selected
classifier will popup.

Naive Bayes

m

Neural Network

After specifying classifier parameters (or
leaving it as default) popup menu will close

@ @ and classifier runs.
— Performance Results ———

— TestF Results of the classification are summarized |
in the “Status Summary” box.

Confusion Matrix
— Feature Analysis—— A_TE_N_S00_C_1_PEAR_ALL_P_2 NN_POS Performance measures used by libFCL are

W_TE_MN_S00_C_2 PEAR_ALL_P_2_NN_POS - precigion, recall and f-score.
W_TE_N_S00_C_2_PEAR_ALL_P_2_NN_NEG ROC
A_TE_N_S00_C_3 PEAR_ALL_P_& NN_NEG User can also visualize the classification

p-Test resultz on a confusion matrix by clicking the
corresponding button in the "Performance -

Pleaze select feature(z) in order to
analyse with feature analysis tool:

Accuracy

04
&
i

[HPRS [—

Figure 7 Classification Panel of libFCL

User is encouraged to tune parameters of classifiers by providing training and cross validation
sets to “training features” list and “test features” list respectively before actually loading test
features, as a best practice in machine learning. The disabled buttons and their functionalities
are expected to be available in the future versions of libFCL.

Note that SVM option of libFCL uses libSVM library, provided SVM mex files are compiled under
a 64-bit Windows environment, Linux or MAC-0S users should compile corresponding mex files
under ‘/libFCL/FCL_Classification/libsvm/matlab/’ directory or just type following line on
libFCL root:

>> run ('C:\1ibFCL\FCL Classification\libsvm\matlab\make.m")

10

4. Sample Run

After installing and starting libFCL user is introduced with the first panel, data loading panel.
libFCL provides a sample data located under directory “libFCL/data/”. Data for training and test
along with class labels are loaded using this panel (see Figure 8 Loading Sample Data below).

) [5G = B % l
L
B Select TRAINING data fie ~ [
=
1 : ' Look in'w j & £ B
o : - o
. = MName Date modified Type
el
Load Data e 29.11.201211:28 Matlab AL
Recent Places
2911.201211:28 Matlab Au
| | 21120121128 Matlab A
atatalEabel Sl [liaemy Desktop T 29.11.201211:28 Matlab A
Input training data matrix : 1 — = sample_vX¥Z.mat 2911.201211:28 Matlab Au
=
(none} I LiE‘mries
Samples are: (@ Matrix columns () Matrix rows |”
Computer
Input training labels : Q
none) hd
(nene) [—
« [I N »
— Input Data & Labels for Testing
= = File name: |sample_tr_data.mat j Open |
Input test data matrix :
Files of typs: [MATies ("mat) =l Cancel
(rane) e
B B 'Then, the local mesh for each voxel is formed l
Samples are: (@ Matrix columns () Matrix rows by including the functionally closest
neighboring voxels in the mesh. The
Input test labels - relationship between the voxels within a -
1 No input test labels selected
(rane) e
=

Figure 8 Loading Sample Data

After successfully loading provided training and test data along with corresponding class labels,
user has to check middle column for libFCL translation. Provided data samples are distributed in
matrix rows therefore “Matrix rows” radio button must be selected for both training and test
data matrices (see Figure 3 Load Data Panel of libFCL above). Clicking next button ignites
several validations and user is prompted with warnings or errors when loading data is not
successful.

Second panel of libFCL will be opened when all validations checks were successful. The libFCL
waits loading voxel position file and specifying cluster number. This step is conducted same as
the first step, provided “sample_vXYZ.mat” should be selected for loading. Set number of clusters
as 8 and click run. Successful completion of clustering will be prompted with a dialog popup and
result of the clustering will be loaded to the “Clustering Results” list (see Figure 9 Clustering
Region of Interest Using Sample Voxel Positions below). File name of clustering result indicates
number of voxels in the region of interest as N_* and number of clusters C_*. For example
cluster_labels_N_500_C_8 means that number of voxels is 500 and number of cluster is 8.

11

n FCL_clustering = £

j ’ -4 ’ —
Clustering
[u :
— Cluster ROl along X¥Z ——— — Clustering Descriptions
Clustering completed
i Clusterin -@ oxels along 3-D XYZ coordinates int T
Load voxel XvZ data file : cluster(s)

sample_vXYZ =) -’
respect to their locations, where each cluster
2 — Clustering Resilts iz called a local patch.
L
Number of clusters : cluster labels N 500 C 8 -

Then, the functional connectivity graph is
formed for the voxels in each local patch.

m

The local patches are constructed by
clustering the whole dataset of voxels, using
Euclidean distance among spatial locations of —
wvoxels in a self-tuning spectral clustering
algorithm.

After partitioning the whole dataset into
clusters, functional connectivity will be
measured locally within these clusters in the
next step.

3 i
= a | -

Figure 9 Clustering Region of Interest Using Sample Voxel Positions

0

User may repeat this procedure multiple times with differing number of clusters and select
multiple clustering results then click next button to transfer results for connectivity analysis.

After clicking next button Functional Connectivity Analysis panel will be opened and selected
clustering results are transferred to the input list (Clustering Results list) of the third panel. In
order to initiate a functional connectivity analysis, first select the clustering result from the
“Clustering Results” list, then choose correlation measure and click run. If all the input
validations are accomplished connectivity algorithm will start and user will be prompted the
successful completion of functional connectivity analysis routines. The result of the functional
connectivity analysis will be loaded into the “Functional Connectivity Results” list. File name of
functional connectivity result indicates number of voxels in the region of interest as N_x,
number of clusters C_*, correlation measure M_* and a trailing _ALL indicating connectivity
matrix is calculated using time steps from all classes. For example fc_N_500_C_8_M_PEAR_ALL
means that number of voxels is 500, number of cluster is 8, correlation measure used is pearson
correlation and connectivity matrix is calculated using time steps from all classes.

The functional connectivity analysis will be followed by feature extraction. Click next in order to
start feature extraction.

12

B FeLrea = =

B libFcL El_l_Jﬂh
f . P
/4 /
. Functional Connectivity Calculated Successfullyl
Connectivity
™
— Calculate Functional Conn. (FC)— Functional Connectivity Descripti — Algorithm Descripti

— FC Matrig——————————— Calculating connectivity matri§ FOR ALL CLASSES
connectivity measure with NO [zati

ing PEARSON forrelation as This panel of the libFCL is the -
wiithin-cluster functional connectivity

@ For all classes analysis panel

For each class

Functional connectivity captures
deviations from statistical

independence between distributed

and often spatially remote neurcnal £
units (voxels in our case).

— Clustering Results 1
d b e

§ — =
2 cl.lster labels N 500 C & -

@ Pearson correlation

— Connecii

Statistical dependence may be
estimated by measuring correlation or
covariance.

) Scan correlation

Qaak correlation

The libFCL provides three correlation

__ Parallelizaton—— wvariants as a measure of connectivity,
. namely, pearson correlation, peak
(@ Mone (Serial) correlation and scan correlation.
Use Matlab-PCT If no functional connectivity is
calculated in this step then the
Use CUDA nearest neighbor selection in the -
R M) -
un PRy = Py Next Reset
% =R = R rev ==

Figure 10 Calculating Functional Connectivity using Sample Data

The feature extraction panel will be started with “Functional Connectivity Results” list is filled
with the selected functional connectivity analysis results in the previous step. In order to extract
features for training and test first choose one the functional connectivity results, then select one
of the nearest neighbor selection algorithm, set LRF order a non-zero integer and click run
button. When all the input validations are accomplished feature extraction algorithm will start
and user will be prompted the successful completion. The result of the extracted features will be
loaded into the “FC-LRF Results (Training)” and “FC-LRF Results (Test)” lists. Repeat this
process by changing LRF order, nearest neighbor selection algorithm and input functional
connectivity results and transfer selected features to the classification panel. Note that when
using LRF as nearest neighbor selection algorithm, libFCL does not use functional connectivity
results or clustering results, it selects nearest neighbor only considering the Euclidean distance
between voxels. Therefore resulting feature filenames will have cluster number as one. File
name of extracted features indicate number of voxels in the region of interest as N_ * , number of
clusters C_*, correlation measure _NONE_for raw LRF, PEAR_ALL for pearson correlation,
PEAK_ALL for peak correlation, SCAN_ALL for scan correlation, LRF order P_+* and nearest
neighbor selection algorithm NN_LRF for raw LRF, NN_POS for positive correlation based
neighbor selection, NN_NEG for negative correlation based neighbor selection. For example
A TR _N_500_C_8 M _PEAR ALL P 4 NN_POS means that number of voxels is 500, number of
cluster is 8, correlation measure used is pearson correlation and connectivity matrix is
calculated using time steps from all classes, FC-LRF order is 4 and nearest neighbor is selected
using positive correlation (see Figure 11 Feature Extraction Using Sample Data below).

13

rn FCL_FC_LRF

— Calculate FC-LRF

() None (LRF)
() Positive correlation

@ Negative correlation

ENT matrix 15
<
)
LRF Order : 4
Threshold [0,1] : 0

FC-LRF Descripti

_/

Extracting FUNCTIONAL CONNECTIVITY AWARE LOCAL RELATIONAL FEATURES , using

PEARSON correlation as connectivity measure, NEGATNWE CORRELATION as nearest neighbor

selection method, with an Irf order of 4, number of cluster(s) as &, number of voxels as 500.

— FC-LRF Results (Training)

W _TR_N_500_C_1_NONE_P_4_NN_LRF
W TR N 500 C_8 PEAR ALL P 4 NN_POS
A TR N 500 C 8 PEAR ALL P 4 NN _NEG

— FC-LRF Results (Test)

A_TE_N_S00_C_1_NONE_F_&_NN_LRF

A_TE M 500 C 8 PEAR ALL_P_4 NN_POS
A TE M 500 C & PEAR ALL P 4 NN NEG

=]

= ji

— Algorithm Description
We define a local mesh around each -
woxel which consists of the set of F
functienally connected voxels. These
meshes are then used to extract LRF
features from the meshes which
consist of functionally similar voxels.

m

The suggested model is called

Functional Mesh Learning and the
extracted LRF features are called
Functional Connectivity aware LRF
(FC-LRF). m

User may select three different
features, LRF, FC-LRF using positive
correlation and FC-LRF using negative
correlation. In order to extract LRF user
is expected to load voxel positions in
the second step and for FC-LRF
options user is expected to calculate
functienal connectivity in the third step.

e] e

Figure 11 Feature Extraction Using Sample Data

Selecting extracted features and clicking next button will open up the final panel of the libFCL
where “Training Features” and “Test Features” lists are loaded with features selected in the
previous step. In order to conduct a classification task first select one item from the “Training
Features” list and one item from “Test Features” list, then choose a classifier and click run. User
will be prompted to enter classifier specific parameters, use them as default and click run (see
Figure 12 Classification Using Sample Data below).

The results will be updated in the “Status Summary” box with performance measures as
precision, recall and f-score. Clicking the “Confusion Matrix” button draws the confusion matrix
for the current classification result.

The finish button closes the figure and exits the libFCL.

14

. FCL_classification

— Classificati

[B rbrcL

@ K-Nearest Neighbors.

(7 Support Vector Maching

Naive Bayes

Neural Network

— Select Clagsi ﬂ—

— Training F

A_TR_N_500_C_1_NONE_P_4_NN_LRF
A

@

— TestF

Claszification Successful

— Status Summary-

Classification completed for 2 classes

Recal :0.95833
Precision : 0.96154
Fscore @ 095826

/

— Feature Analysis

Please select feature(s) in order to
analyse with feature analysis tool:

Feature Analysis Tool

pertormance rosute /.

/

-
I . Confusion (plotconfusi... @&u

Confusion Matrix

/

A_TE_N_S00_C_1_NONE_P_4_NN_LRF

(Confusion Matrix b

ROC
— User can also visualize the classification
| p-Test | results on a confusion matrix by clicking the
cor button in the “Performance hd
Accuracy
ﬂl Prev llF'nshHmmt]

Figure 12 Classification Using Sample Data

15

A. Acknowledgements

We thank the developers of the following softwares and toolboxes whose source code or file
formats were referenced during our package development:

MATLAB:
http://www.mathworks.com/products/matlab/

Functional Connectivity Toolbox:
https://sites.google.com /site /functionalconnectivitytoolbox/

libSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Parallel Spectral Clustering:
http://alumni.cs.ucsb.edu/~wychen/sc.html

This work was partially supported by the Science and Technological Research Council of Turkey
(TUBITAK).

16

http://www.mathworks.com/products/matlab/
https://sites.google.com/site/functionalconnectivitytoolbox/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://alumni.cs.ucsb.edu/~wychen/sc.html

B. License

Copyright (c) 2012, Orhan FIRAT
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the distribution
* Neither the name of Middle East Technical University and Kog¢ University

nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

17

