
1

libFCL (v1.0)

A new MVPA toolbox for brain state classification,
functional connectivity and feature analysis.

Orhan Fırat
orhan.firat@ceng.metu.edu.tr

November 26, 2012

2

Contents

1. Introduction .. 3

2. Installation .. 4

3. Algorithm Overview .. 5

Step 1: Load Data ... 6

Step 2: Clustering .. 7

Step 3: Functional Connectivity Analysis .. 8

Step 4: Extract LRF / FC-LRF .. 9

Step 5: Classification ... 10

4. Sample Run .. 11

A. Acknowledgements .. 16

B. License ... 17

3

1. Introduction

This document provides a detailed description of the design and usage of the libFCL. It includes

an overview of the various components of the library, installation instructions and a sample run

using provided toy data along with toolbox. The intended audience is users and developers of

the libFCL. The document assumes that the user is familiar with MATLAB and has a grasp on

Multi-Voxel Pattern Analysis (MVPA) methods using functional Magnetic Resonance Imaging

(fMRI) data.

The libFCL is a library of research code initially developed to support the Pattern Analysis of

Functional Magnetic Resonance Imaging Project (http://neuro.ceng.metu.edu.tr) accomplished

by the collaboration of Department of Computer Engineering - Middle East Technical University

and Department of Psychology - Koç University. The libFCL is a new MVPA toolbox for brain

state classification, functional connectivity and feature analysis.

The library is developed and tested under 64-bit Windows environment using MATLAB

7.11.0.584 (R2010b) and is actually a collection of software libraries (see Appendix A) some of

which are third-party open source projects including Functional Connectivity Toolbox,

Parallel Spectral Clustering, libSVM. We have released the library under the BSD license (see

Appendix B).

Developed by Orhan Fırat,

Department of Computer Engineering,

Middle East Technical University, Turkey

Contact information:

orhan.firat@ceng.metu.edu.tr

http://neuro.ceng.metu.edu.tr/
orhan.firat@ceng.metu.edu.tr

4

2. Installation

I. Download the toolbox archive file (libFCL.rar) and unzip it to anywhere in your file

system (ex: ‘C:/libFCL/’).

II. Run MATLAB. Either,

 Add libFCL path to MATLAB search path manually:

Type

>>addpath('C:/libFCL/');

means the path of libFCL on the machine

or

 Go to the folder where you extracted the libFCL using MATLAB “current folder”

browser.

III. Call script start_libFCL.m to start libFCL,

Type

>>start_libFCL;

This script automatically adds all the folders under the libFCL directory to the

MATLAB path and calls the opening figure of toolbox (see Figure 1 Starting the

libFCL below).

Figure 1 Starting the libFCL

http://neuro.ceng.metu.edu.tr/fmri_prj/codes/libFCL.rar

5

3. Algorithm Overview

After successfully starting libFCL, an opening panel will popup. The libFCL consists of five

consecutive panels that you start with loading data and corresponding labels and completing a

classification task in the fifth step.

The very first panel of the libFCL is the data loading panel. In data loading panel, training data,

class labels for training data, test data and class labels for test data is expected to be loaded.

The second panel of the libFCL is the clustering panel where user is expected to load 3D-voxel

locations file and partition the region of interest into a predefined number of clusters.

Functional connectivity is calculated in the third panel of the libFCL. This step calculates

functional connectivity within clusters if conducted in the second step or assumes all the voxels

in the region of interest form a huge cluster and calculates functional connectivity within one

cluster.

Local Relational Features (LRF) or Functional Connectivity Aware Local Relational Features (FC-

LRF) (if functional connectivity is pre-calculated in the third step) are extracted in the fourth

step using training and test data loaded in the first step. The libFCL uses linear prediction filter

coefficients (lpc) function of the MATLAB-Signal Processing Toolbox in order to determine the

coefficients of a forward linear predictor by minimizing the prediction error in the least squares

sense. Therefore, make sure Signal Processing Toolbox is available in your MATLAB.

The final step of the libFCL is the classification step using features extracted in the fourth step.

Two well-known classification methods are provided for the use via toolbox namely, Support

Vector Machine (using libSVM implementation) and k-nearest neighbors (using MATLAB-

Bioinformatics Toolbox).

The major transition pattern of the libFCL is illustrated in Figure 2 Panel Transition Pattern of

libFCL below and also the current step of the algorithm is indicated as a top frame banner in

each panel during execution. Transition between panels is done by the and

buttons on the bottom-right of each panel.

Figure 2 Panel Transition Pattern of libFCL

It is also possible to reset the current list, radio button or check box selections by using

button on the bottom-right.

Each panel has an algorithm description text-box as the right-most column frame which explains

the current step and panel usage.

Step 1:
Load Data

Step 2:
Clustering

Step 3:
Functional

Connectivity

Step 4:
Extract

LRF/FC-LRF

Step 5:
Classification

6

Step 1: Load Data

The first panel of the libFCL is data definition panel for the overall algorithm. This panel consists

of three frame columns, input data and labels loading boxes on the left, input data description

boxes in the middle and algorithm description box on the right (see Figure 3 Load Data Panel of

libFCL below).

Figure 3 Load Data Panel of libFCL

User has to specify training data and corresponding class labels files. Training data must be a

matrix of 𝑁𝑥𝑀 or 𝑁𝑥𝑀 where 𝑁 is the total number of time steps and 𝑀 is the total number of

voxels in the region of interest. The class labels can be specified in two different ways, first by an

𝑁𝑥𝐶 matrix where 𝐶 is the number of classes. When the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column is 1 that states

𝑖𝑡ℎ time point is in 𝑗𝑡ℎ class and the rest of the 𝑖𝑡ℎ row is all zero. The second format for class

labels is using a 𝑁𝑥1 vector representation where each non-zero element of the vector indicates

the corresponding class label. User can transpose data matrices by using radio buttons to

indicate samples are distributed either in the rows or in the columns. For details of the data

representations user may find it informative to examine sample data provided with the toolbox

under the folder “libFCL/data/”.

The middle frame consists of two description boxes that are designed to inform user about how

libFCL translates the inputs and/or selections on the left frame column. User do not have to

specify test data and test labels but for training.

I II III

7

Step 2: Clustering

The second panel of the libFCL is the clustering panel. Clustering is basically the task of

assigning a set of objects (voxels in our case) into groups (called clusters) so that the objects in

the same cluster are more similar (anatomically closer in our case) to each other than to those in

other clusters. The main advantage of clustering the region of interest along anatomical

locations is relaxation of the computational cost of functional connectivity which will be

conducted in the third step. The clustering provided in the toolbox is a generic clustering

algorithm and is not enforced by the overall algorithm. User can also load a pre-defined

clustering result by using button, in which loaded clustering file may indicate functional

clusters or anatomical region of interests that groups voxels (see Figure 4 Clustering Data Panel

of libFCLbelow).

Figure 4 Clustering Data Panel of libFCL

This panel also consists of three frame columns, voxel positions loading and clustering

parameters on the left, input data description box and clustering results list in the middle and

algorithm description box on the right. User should take into account that the time required by

the clustering algorithm grows rapidly as the number of voxels increases, though provided

clustering algorithm is tested up to 80.000 voxels.

In order to make it possible to use clustering results in the future, middle panel allows user to

save clustering results to disk by using button in the middle frame below clustering

results list. The selected clustering results will be carried to and further used in the next panel

(step 3). Note that “Clustering Results” list allows user to select multiple clustering results.

8

Step 3: Functional Connectivity Analysis

The third panel of the libFCL is the within-cluster functional connectivity analysis panel.

Functional connectivity captures deviations from statistical independence between distributed

and often spatially remote neuronal units (voxels in our case). Statistical dependence may be

estimated by measuring correlation or covariance. The libFCL provides three correlation

variants as a measure of connectivity, namely, pearson correlation, peak correlation and scan

correlation. User may refer to the Functional Connectivity Toolbox for details of the provided

correlation measures.

Figure 5 Functional Connectivity Analysis Panel of libFCL

This step is also not enforced by the overall algorithm. If no functional connectivity is calculated

in the third step then the nearest neighbor selection in the fourth step will be conducted

according to the voxel positions provided in the second step.

Different from the first two panels, middle frame of the third panel comprises two lists

“Clustering Results” list on the left functions as input list and “Functional Connectivity Results”

list on the right functions as output list. This structure allows user to analyze several inputs by

either loading from file or calculating in the previous step and obtaining corresponding outputs

for functional connectivity all compactly in a single panel. Resulting functional connectivity

matrices will be carried to the fourth step if they are selected in the “Functional Connectivity

Results” list. Note that “Functional Connectivity Results” list also allows multiple selections (see

Figure 5 Functional Connectivity Analysis Panel of libFCL above).

Inputs Outputs

9

The disabled buttons and their functionalities are expected to be available in the future versions

of libFCL. A new button is introduced in this panel which clears the list when clicked. User

should be aware of deleting unsaved results may cause recalculating corresponding results.

Step 4: Extract LRF / FC-LRF

Feature extraction is one the most important step in the classification tasks and the fourth step

of libFCL completes is responsible for feature extraction. User may select three different

features, LRF, FC-LRF using positive correlation and FC-LRF using negative correlation. In order

to extract LRF user is expected to load voxel positions in the second step and for FC-LRF options

user is expected to calculate functional connectivity in the third step.

Figure 6 Feature Extraction Panel of libFCL

Similar to the convention of third panel, middle frame comprises lists “Functional Connectivity

Results” list on the left functions as an input list and “FC-LRF Results (training) / (test)” lists on

the right functions as output lists. Features are extracted according to the loaded data for

training and test in the first panel of libFCL. Note that loading test data and labels is optional in

the first panel and therefore determines the extraction of test features in feature extraction step.

LRF Order parameter on the left frame column, determines the size of a mesh formed around

each voxel and must be between 1 and minimum number of voxels in all clusters. The disabled

buttons and their functionalities are expected to be available in the future versions of libFCL.

User is provided with the same load, save and clear operations for the input/output lists also

multiple selections are allowed for the output lists to transfer feature extraction results to the

final step, the “Classification” step, of the libFCL.

10

Step 5: Classification

The libFCL encapsulates two well known classification methods, k-nearest neighbor and

support vector machine. When user selects training data to train a classifier and test data in

order to generalization test, and clicks the run button corresponding parameter menu for

selected classifier will popup. After specifying classifier parameters (or leaving it as default)

popup menu will close and classifier runs.

Results of the classification are summarized in the “Status Summary” box. Performance

measures used by libFCL are precision, recall and f-score. User can also visualize the

classification results on a confusion matrix by clicking the corresponding button in the

“Performance Results” box. Save button at the bottom right of this box is also allows user to save

class labels predicted by the classifier to the disk.

Figure 7 Classification Panel of libFCL

User is encouraged to tune parameters of classifiers by providing training and cross validation

sets to “training features” list and “test features” list respectively before actually loading test

features, as a best practice in machine learning. The disabled buttons and their functionalities

are expected to be available in the future versions of libFCL.

Note that SVM option of libFCL uses libSVM library, provided SVM mex files are compiled under

a 64-bit Windows environment, Linux or MAC-OS users should compile corresponding mex files

under ‘/libFCL/FCL_Classification/libsvm/matlab/’ directory or just type following line on

libFCL root:

>> run('C:\libFCL\FCL_Classification\libsvm\matlab\make.m')

11

4. Sample Run

After installing and starting libFCL user is introduced with the first panel, data loading panel.

libFCL provides a sample data located under directory “libFCL/data/”. Data for training and test

along with class labels are loaded using this panel (see Figure 8 Loading Sample Data below).

Figure 8 Loading Sample Data

After successfully loading provided training and test data along with corresponding class labels,

user has to check middle column for libFCL translation. Provided data samples are distributed in

matrix rows therefore “Matrix rows” radio button must be selected for both training and test

data matrices (see Figure 3 Load Data Panel of libFCL above). Clicking next button ignites

several validations and user is prompted with warnings or errors when loading data is not

successful.

Second panel of libFCL will be opened when all validations checks were successful. The libFCL

waits loading voxel position file and specifying cluster number. This step is conducted same as

the first step, provided “sample_vXYZ.mat” should be selected for loading. Set number of clusters

as 8 and click run. Successful completion of clustering will be prompted with a dialog popup and

result of the clustering will be loaded to the “Clustering Results” list (see Figure 9 Clustering

Region of Interest Using Sample Voxel Positions below). File name of clustering result indicates

number of voxels in the region of interest as N_* and number of clusters C_*. For example

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑎𝑏𝑒𝑙𝑠_𝑁_500_𝐶_8 means that number of voxels is 500 and number of cluster is 8.

1

2

3

12

Figure 9 Clustering Region of Interest Using Sample Voxel Positions

User may repeat this procedure multiple times with differing number of clusters and select

multiple clustering results then click next button to transfer results for connectivity analysis.

After clicking next button Functional Connectivity Analysis panel will be opened and selected

clustering results are transferred to the input list (Clustering Results list) of the third panel. In

order to initiate a functional connectivity analysis, first select the clustering result from the

“Clustering Results” list, then choose correlation measure and click run. If all the input

validations are accomplished connectivity algorithm will start and user will be prompted the

successful completion of functional connectivity analysis routines. The result of the functional

connectivity analysis will be loaded into the “Functional Connectivity Results” list. File name of

functional connectivity result indicates number of voxels in the region of interest as 𝑁_ ∗ ,

number of clusters 𝐶_ ∗, correlation measure 𝑀_ ∗ and a trailing _𝐴𝐿𝐿 indicating connectivity

matrix is calculated using time steps from all classes. For example 𝑓𝑐_𝑁_500_𝐶_8_𝑀_𝑃𝐸𝐴𝑅_𝐴𝐿𝐿

means that number of voxels is 500, number of cluster is 8, correlation measure used is pearson

correlation and connectivity matrix is calculated using time steps from all classes.

The functional connectivity analysis will be followed by feature extraction. Click next in order to

start feature extraction.

1

2

3

13

Figure 10 Calculating Functional Connectivity using Sample Data

The feature extraction panel will be started with “Functional Connectivity Results” list is filled

with the selected functional connectivity analysis results in the previous step. In order to extract

features for training and test first choose one the functional connectivity results, then select one

of the nearest neighbor selection algorithm, set LRF order a non-zero integer and click run

button. When all the input validations are accomplished feature extraction algorithm will start

and user will be prompted the successful completion. The result of the extracted features will be

loaded into the “FC-LRF Results (Training)” and “FC-LRF Results (Test)” lists. Repeat this

process by changing LRF order, nearest neighbor selection algorithm and input functional

connectivity results and transfer selected features to the classification panel. Note that when

using LRF as nearest neighbor selection algorithm, libFCL does not use functional connectivity

results or clustering results, it selects nearest neighbor only considering the Euclidean distance

between voxels. Therefore resulting feature filenames will have cluster number as one. File

name of extracted features indicate number of voxels in the region of interest as 𝑁_ ∗ , number of

clusters 𝐶_ ∗, correlation measure _𝑁𝑂𝑁𝐸_ for raw LRF, 𝑃𝐸𝐴𝑅_𝐴𝐿𝐿 for pearson correlation,

𝑃𝐸𝐴𝐾_𝐴𝐿𝐿 for peak correlation, 𝑆𝐶𝐴𝑁_𝐴𝐿𝐿 for scan correlation, LRF order 𝑃_ ∗ and nearest

neighbor selection algorithm 𝑁𝑁_𝐿𝑅𝐹 for raw 𝐿𝑅𝐹, 𝑁𝑁_𝑃𝑂𝑆 for positive correlation based

neighbor selection, 𝑁𝑁_𝑁𝐸𝐺 for negative correlation based neighbor selection. For example

𝐴_𝑇𝑅_𝑁_500_𝐶_8_𝑀_𝑃𝐸𝐴𝑅_𝐴𝐿𝐿_𝑃_4_𝑁𝑁_𝑃𝑂𝑆 means that number of voxels is 500, number of

cluster is 8, correlation measure used is pearson correlation and connectivity matrix is

calculated using time steps from all classes, FC-LRF order is 4 and nearest neighbor is selected

using positive correlation (see Figure 11 Feature Extraction Using Sample Data below).

1
2

3

14

Figure 11 Feature Extraction Using Sample Data

Selecting extracted features and clicking next button will open up the final panel of the libFCL

where “Training Features” and “Test Features” lists are loaded with features selected in the

previous step. In order to conduct a classification task first select one item from the “Training

Features” list and one item from “Test Features” list, then choose a classifier and click run. User

will be prompted to enter classifier specific parameters, use them as default and click run (see

Figure 12 Classification Using Sample Data below).

The results will be updated in the “Status Summary” box with performance measures as

precision, recall and f-score. Clicking the “Confusion Matrix” button draws the confusion matrix

for the current classification result.

The finish button closes the figure and exits the libFCL.

1

2

3

4

15

Figure 12 Classification Using Sample Data

1

1

2

3

16

A. Acknowledgements

We thank the developers of the following softwares and toolboxes whose source code or file

formats were referenced during our package development:

MATLAB:

http://www.mathworks.com/products/matlab/

Functional Connectivity Toolbox:

https://sites.google.com/site/functionalconnectivitytoolbox/

libSVM:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Parallel Spectral Clustering:

http://alumni.cs.ucsb.edu/~wychen/sc.html

This work was partially supported by the Science and Technological Research Council of Turkey

(TÜBİTAK).

http://www.mathworks.com/products/matlab/
https://sites.google.com/site/functionalconnectivitytoolbox/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://alumni.cs.ucsb.edu/~wychen/sc.html

17

B. License

Copyright (c) 2012, Orhan FIRAT
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution
 * Neither the name of Middle East Technical University and Koç University
 nor the names of its contributors may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

