
G.L. Gimel' farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 216–224, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Conditional Random Fields for Land Use/Land Cover 
Classification and Complex Region Detection 

Gulcan Can1,*, Orhan Firat1,*, and Fatos Tunay Yarman Vural1  

1 Department of Computer Science, Middle East Technical University, Ankara, Turkey 
{gulcan,orhan.firat,vural}@ceng.metu.edu.tr 

Abstract. Developing a complex region detection algorithm that is aware of its 
contextual relations with several classes necessitates statistical frameworks that 
can encode contextual relations rather than simple rule-based applications or 
heuristics. In this study, we present a conditional random field (CRF) model that 
is generated over the results of a robust local discriminative classifier in order to 
reveal contextual relations of complex objects and land use/land cover (LULC) 
classes. The proposed CRF model encodes the contextual relation between the 
LULC classes and complex regions (airfields) as well as updates labels of the 
discriminative classifier and labels the complex region in a unified framework. 
The significance of the developed model is that it does not need any explicit pa-
rameters and/or thresholds along with heuristics or expert rules. 

Keywords: conditional random fields, land use/land cover, complex region 
de-tection, satellite imagery. 

1 Introduction 

Visual patterns and object occurrences in remote sensing images exhibit high intra-
class variance, meaning that two or more instances of the same object or object 
groups may look coercively different. For example, two airfields may have entirely 
different color structures, composing roads, shapes, sizes and configurations of their 
sub-parts (e.g. one may have just one, crossing, parallel runway(s) having hammer 
shaped, circular, polygonal dispersal areas and located in sandy, snowy, coastal or 
urban terrain). Occasionally these objects and object groups may even look more 
similar to instances within other classes that to instances within their own class, e.g. 
circular oil tanks of a refinery and circular dispersal area of a military airfield.  

Contextual models are significantly useful in order to handle the huge variability 
within classes in the image because of their expressive representations. By forming a 
contextual framework, any object can be accurately classified not only by considering 
its low-level vision features but also its local context (spatial relations) over a proba-
bilistic graphical model. Figure 1 illustrates some real world examples that exhibit 
high intra-class variance.  

                                                           
* Corresponding author. 
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Fig. 1. Examples of airfields from satellite images. Despite the high variance in color, texture, 
deployment terrain and composition, we can still recognize them as remotely sensed views of 
airfields. 

The ability to recognize such complex objects comes from both appearance cues of 
the object itself and contextual relations of the complex objects with their 
surroundings. These contextual relations can be defined as co-occurrence frequency 
of other classes in a predefined neighborhood of the complex object. For instance, if 
the complex object in consideration is an airfield, we would expect urban, vegetation, 
water existence nearby to be less than a certain ratio. This information comes either 
from domain knowledge or by explicit observations. However, deciding this ratio by a 
static threshold is not desirable, since less likely configurations are not allowed at all. 
As in the case of urban areas in the surrounding of an airfield, we may set a 20% 
urban co-occurrence threshold in a 300-meters neighborhood by domain knowledge. 
Yet, Figure 1 demonstrates cases contradicting with such a threshold. Hence rather 
than determining crisp thresholds for the recognition task of a complex object, 
constructing a probabilistic model is much more flexible and suitable.  

Probabilistic graphical models are the state-of-art approach for modeling 
contextual relations between semantic classes [1] and have many applications in 
remote sensing [2-3]. Since labels in spatial data are not independent as well as 
observations, assumptions on data being “independent and identically distributed” 
(i.i.d.) is violated by using traditional classifiers. Therefore such classifiers may 
produce undesirable results when applied to such data.  

This problem motivates the use of Markov Random Fields (MRFs) and more re-
cently Conditional Random Fields (CRFs) for spatial data. In the proposed approach, 
contextual relations between a complex object and its surroundings, which is charac-
terized by LULC classes, are modeled within a CRF framework. The major 
contribution of the proposed model is that a random field is constructed over semantic 
classes rather than pixels or super-pixels as in the literature. Our model aims to 
correctly identify the complex object by recognizing the co-occurrence pattern of all 
other classes in its surrounding as well as updating previously assigned class labels 
which can be obtained by any kind of classification method.  
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The rest of this paper is organized as follows: In section 2, recent motivating stud-
ies in the field of probabilistic graphical models are stated, followed by section 3, the 
adopted methods are explained. In section 4, proposed algorithm is introduced and in 
section 5 dataset and experiments are described. Finally in section 6 some conclusion 
remarks and future work are given. 

2 Recent Studies 

Studies modeling spatial structures vary both in their representations used to encode 
the spatial information and their approaches for learning. Inference on the generated 
graphical models depends on the model selection in the studies and may be thought as 
a representation dependent step.  

One of the pioneering studies employs both contextual and hierarchical representa-
tions with a relationship learning process and Bayesian inference algorithm is pro-
posed by Porway et. al [4]. Their approach presents a grammar-based hierarchical and 
contextual model for object recognition. This grammar-based model combines a sto-
chastic context free grammar (SCFG) [5] with a Markov Random Field (MRF) to 
capture both local and global context and combines bottom-up information with top-
down knowledge. They represent the frequency of occurrence and type of object parts 
with a SCFG and model the spatial and appearance relationships between them using 
MRFs, thus create a constrained grammar that can represent a huge number of in-
stances for a single category. Another contribution of this study is that, this contextual 
and hierarchical model learns statistical constraints on the appearances and relation-
ships between different parts of the image classes with a minimax entropy framework 
[6]. This framework selects the set of contextual relationships necessary for modeling 
the object class; begins with a large set of relationships that could potentially exist 
between parts, then iteratively selects only those relationships that help the model best 
match true statistics for that image class. They separated hierarchy into two sets for 
objects and scene which enables to plug-in any object detection algorithm for bottom-
up detection procedure. They employed compositional boosting [7] for some specific 
bottom-up proposals. 

In [8], a region and object based model for object-detection is proposed through a 
hierarchy of CRFs. In the bottom level, a CRF is comprised of pixels as probabilistic 
graphical model nodes and features are extracted in pixel level accordingly, a unified 
energy function made it possible to incorporate bottom-middle and top level random 
fields. In the middle level, segments are formed as the model nodes and contextual 
relations between segments are revealed with region statistics. Finally as the top-most 
level of the proposed hierarchical graphical model, segments and objects are 
connected to each other and contextual relations between objects are tried to be 
extracted from positional relations of the objects both considering segment level 
interactions at once. The model employed for this graphical model is a conditional 
MRF (CRF) that is trained by labeled images from both levels with logistic regression 
and inference is conducted by use of hill-climbing.  
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Jiang et.al. propose a context based concept fusion model for semantic concept de-
tection [9]. In this study, posterior probabilities for several classifiers are fed to a CRF 
model for generating updated posterior probabilities through a fully-connected CRF 
where each node represents a concept. This corresponds to class labels in our case.  

Lee et.al. propose a model, namely support vector random fields (SVRF), which 
combines the ability of CRFs to model different types of spatial dependencies and the 
appealing generalization properties of support vector machines (SVMs) [10]. Their 
approach employs an observation-matching potential by changing the association 
potential in CRF model. Therefore they combined the discriminative classification 
power of SVMs with spatial context encoding power of CRFs. 

3 Methods Adopted 

SVM is a supervised classification approach which makes use of kernels (mapping 
functions) and sparsity [11]. By the help of kernels, samples in n-dimensional space 
are carried to a higher dimensional Hilbert space, therefore samples become linearly 
separable by a hyper plane. In this model a hyper plane that separates nearest samples 
from different classes with maximum margin is selected and named as support vec-
tors. Tolerance and cost parameters can be used to allow or penalize outliers. SVM is 
also known as max-margin classifier.  

As stated previously, spatial relations between neighboring pairs can be modeled by 
MRFs and CRFs. More specifically, the class labels can be assigned by maximum a 
posterior (MAP) estimation in image classification task as ݕெ஺௉ ൌ  .ሻݔ|ݕ௬ܲሺݔܽ݉݃ݎܽ
This can be interpreted as CRF framework that models directly the posterior 
probability of labels given the observed data. Consequently, besides the contextual in-
formation in labels, the CRF framework has ability to capture the contextual infor-
mation in observed data.  

The discriminative CRF framework considers Markovian property of ݕ  condi-
tioned on ݔ and directly models the posterior as a Gibbs distribution with the follow-
ing form: ܲሺݔ|ݕ, ሻߠ ൌ  1ܼ exp ሼെ ෍ ߮௖௖א஼ ሺݕ௖, ,ݔ  ሻሽ    (1)ߠ

where ܼ ൌ  ∑ exp ሼെ ∑ ߮௖ሺݕ௖, ,ݔ ஼אሻ௖ߠ ሽ௬  is partition function (normalization con-
stant), ߮௖ is potential defined on clique ܿ with parameters ߠ,  ௖ is set of labels over clique ܿ. Then the pair-wise CRF models can be written asݕ is set of cliques, and ܥ

ܲሺݔ|ݕ, ሻߠ ൌ  1ܼ exp ቐെ ෍ ߮௜௜אௌ ሺݕ௜, ,ݔ ሻݓ െ ෍ ෍ φ୧୨൫y୧, y୨, x, v൯௝א஗౟௜אௌ ቑ (2)

where ߟ௜  is the set of neighbors of site ݅, ߮௜  and ߮௜௝  are the unary and pair-wise 
clique potentials with parameters ݓ and ݒ, respectively, then ߠ denotes the parame-
ter set ߠ ൌ ሼݓ,  ሽ. The unary potential ߮௜ represents the association of a single site toݒ
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semantic labels, whereas pair-wise potentials ߮௜௝  can be seen as a measure of how the 
labels at neighboring sites at i and j should interact given image ݔ. In fact, the unary 
and pair-wise potentials in CRF should be designed as discriminative as possible 
according to the domain it is applied to. 

In our approach, we construct a fully connected random field over classes similar to 
concepts proposed by Jiang et.al. SVM is an intermediate step to assign class labels to 
segments. We could have applied other methods here, but preferred SVM due to its high 
performance. With this step, initial class map for LULC classes is obtained and they are 
then updated in the proposed CRF model according to context of the complex object.  

4 Proposed Algorithm 

In this study, airports are chosen as the complex regions and water, forest, green-
land, urban, concrete, soil as LULC classes. The most significant cue of an airfield is 
the existence of runway(s), which consists of basically long straight parallel lines. We 
propose an algorithm for categorization of Parallel Line Bounded Regions (PLBR) 
which is stated as a strong indicator and invariant of airfields in highly variant contex-
tual environments [12]. In the proposed algorithm, context information of airfields is 
formulated over LULC classes. Proposed model is also for updating labels assigned to 
LULC classes in the means of airport context.  

Proposed model is a fully-connected conditional random field which can be seen in 
Figure 2. Fully-connected graphical model is selected in order to reveal contextual 
relations between all classes and their mutual influence. 

 

Fig. 2. Proposed CRF model, which is a fully connected graph aiming to capture all possible 
pairwise relations between semantic categories 

Figure 3 illustrates workflow of the proposed algorithm. In the proposed algorithm, 
the first step is the preprocessing step in which segmentation of the input image via the 
mean-shift algorithm [13] and PLBRs extraction. The PLBRs are extracted by finding 
the line segments [14] on the steerable-filter [15] response of the image first and then 
extracting the parallel ones. Note that PLBRs are treated as regular seg-ments.  

Pre-processing step is followed by a feature extraction step. For each segment, fea-tures 
are extracted as illustrated in Figure 4. For this purpose, fundamental maps are obtained 
first. These are spectral values (red, green, blue, near-infrared), DTED map, Gabor filter 
response, normalized difference water index (NDWI) map [16] and nor-malized differ-
ence vegetation index (NDVI) map calculated using (3) and (4) respectively. 



 CRF for LULC Classification and Complex Region Detection 221 

ܫܹܦܰ ൌ ݊݁݁ݎܩ െ ݊݁݁ݎܩܴܫܰ ൅ ܫܸܦܰ (3)  ܴܫܰ ൌ ܴܫܰ െ ܴܫܴܰ݀݁ ൅ ܴ݁݀  (4) 

Gabor response image is obtained by taking maximum response of a pixel at eight 
directions and one scale.  

An initial labeling for LULC classes over segments is obtained with an SVM clas-
sifier by using features extracted. SVM is trained with a labeled dataset and the pa-
rameters are determined using cross-validation in validation set. Note that, the initial 
labeling in this step is conducted only for segments, rather than PLBRs, with 
considering only LULC classes (6 classes).  

For each PLBR, a fully-connected CRF model as depicted in Figure 2 is 
constructed. No further operation is conducted over a PLBR before embedding them 
into this CRF model as a node. For each PLBR, the 300-meter neighborhood is 
analyzed in the ini-tial class label map obtained by SVM classifier. All segments with 
the same class label are treated as one single node in the CRF model of the 
corresponding PLBR. As an example, in Figure 5, there are several segments initially 
labeled as urban class (cyan) by SVM. For the Urban node in the CRF model, we 
extract unary potentials considering all these urban segments.  

After obtaining the CRF model for a PLBR, node and edge features are extracted 
for all seven nodes. Node features for a node in the CRF model are extracted as in 
Figure 4, but this time; extraction is conducted over all segments of the corresponding 
7 class label not separately but as a whole (e.g. mean and standard deviation of urban 
class in Figure 5, is computed over all cyan area and used as the node features of the 
Urban node). 

 

Fig. 3. Workflow of the algorithm 
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For the edge features, overlapping, adjacent and in-neighborhood class frequencies 
are used (see Figure 5). These are calculated based on pixel counts of each class in 
corresponding area.  

For the CRF framework to be function reasonably, node features and edge features 
are converted into unary and pair-wise potentials using multi-class logistic function.  

Then potentials are fed to energy function and parameters are learnt for the model 
by minimizing this energy function (2). In test phase, CRF model for each PLBR is 
decoded according to trained parameters.  

During parameter estimation in training phase, L-BFGS is used. It is a limited-
memory quasi-Newton method for unconstrained optimization. Two distinct loss 
functions are applied during training, namely loopy belief propagation (LBP) and 
pseudo negative log-likelihood (NLL). As the decoding method, Iterated Conditional 
Modes (ICM) is used [17]. 

 

Fig. 4. Feature extraction 

5 Dataset and Experiments 

In this study, 4 GEOEYE multispectral images with size of ~3800x3800 pixels 
are used. Each image contains between 23 and 89 PLBRs either corresponds to an 
air field or one of the LULC classes. 112 PLBRs in two images are used for 
training having 53 of them being actually airfield and 77 PLBRs in remaining two 
images are  

 

Fig. 5. Proposed edge features over SVM labels 
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used for testing having 49 of them actually airfield. Ground truths are prepared by 
labeling segments around each PLBR region. 

There are seven classes in this study, namely water, urban, forest, green land, soil, 
concrete, and airfield. In our experiments, we used an eighth state, an extra state to 
enable the model to reject. Since we combine segments according to their prior labels, 
mixing cases may confuse the CRF model. Eighth state corresponds to "other" or 
"mixing" class.  

As performance measures, recall and precision are used for airfield detection. 

Table 1. Performance results of the proposed algorithm using ICM decoding 

Loss Function 

Pseudo Negative Log-likelihood  92 46.94 
Negative Log-likelihood with LBP 93.33 57.14 

 Precision Recall 

6 Conclusion and Future Work 

The proposed model categorizes PLBRs and corrects/updates SVM results in the con-
text of an airport-PLBR. The actual goal of this paper is focusing on detecting actual 
complex objects, airfields in our case, accurately. Recall values in Table 1 demon-
strate that it is a hard task. PLBRs could be decoded as urban or forest-green land 
which may semantically correspond to roads and edges between green lands respec-
tively. Other studies about airfield detection in the literature have specific datasets and 
employ generally heuristic or threshold-based approaches. This makes comparison 
with our approach inapplicable.  

Instead of using SVM output of training images for training the CRF model, 
ground truth of training images can be directly employed. This would probably be 
better for CRF to learn true relationships among classes. However, in this case, train 
and test phases would have different steps, since SVM would not be involved in train-
ing phase to obtain areas under each class node.  

The proposed CRF model is able to embed spatial information around complex ob-
jects in terms of LULC classes; however it is open to improvements. The model can 
be designed as a star shape to make pair-wise relations more representative. For the 
CRF model corrects SVM results in segment level, not as a whole semantic class, 
segments layer can be added to the model which is connected to class nodes in the 
originally proposed model. This hierarchical model would make our model more 
relaxed and capable. However, computational tractability would be lost in this dense 
graph structure and only approximate methods could be applied. 
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