
Scalable Functional Connectivity
and Functional Clustering for fMRI

Orhan Fırat, Ph.D. Student

Department of Computer Engineering,

Middle East Technical University

orhan.firat@ceng.metu.edu.tr

Affiliation and Collaboration

Department of Computer Engineering
Neuro-ceng

Department of Psychology Graduate School of Informatics

What do we do?

Computational Neuroscience

• Domain : fMRI

• Objective : Develop representative and informative
models for cognitive processes

 Pattern Analysis (MVPA), Machine Learning

 Structure Learning

 Structured Prediction

 Mind Reading

Pattern Analysis and Machine Learning

• More data → robust approaches for
representation / discrimination

• Science
– New learning paradigms

– New models for cognitive process representation

• Engineering
– Computational complexity;

time-memory complexities.

– Practical solutions for researchers

How do we do?
(Engineering Part)

Case Studies:

1. Applying large scale functional connectivity on GPU

2. Clustering / parcellation functional connectivity
matrices on hybrid architectures

Functional Connectivity

Functional Connectivity (FC) is the statistical dependence
between remote neural elements or regions across time.

1. Find correlation between two voxels’ time series using
a correlation metric.

2. Construct correlation matrix (connectivity matrix) by
using each pairs’ correlation response.

Scalability of Functional Connections

• Connectivity matrices are expensive in voxel level.

• Considering functional relations of a voxel with all
other voxels;

• 8142 voxels makes ~33M functional relations

• 82926 voxels makes ~3438M funtional relations

Scalability of Functional Connections

• Suppose region of interest consists of M voxels
– Let computation time of functional relations for a voxel pair

(ʋi -ʋj) takes t second

– Computation time for functional connectivity matrix

Tfc takes
Tfc = M2 x t seconds

– Tfc grows exponentially on M.

Ex: Suppose computation time of each functional connectivity metric takes ~1sec

For 8142 voxels,

Tfc = (8142*8412)/2-8142 = 33.137.940 sec ≅ 9204hours ≅ 383 days

with 256-way perfect parallelization (in a cluster) ≅ 1,5 days

Scalability Analysis

• Calculating even ~8000x8000 sized correlation
matrix is expensive where our domain spans
~80.000 voxels and their relations.

• Apply GPU parallelization for speed-up.

• Reformulate correlation metric for GPU.

Pearson Correlation Coefficient

• Cross-correlation of any two individual time-series x and y, is
given by

• This can also be written as:

• Design appropriate GPU architecture for reformulated
correlation

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

1

1

1

∑x1i

∑x2i

∑x3i

∑x4i

∑x5i

. =

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

1

1

1

∑x2
1i

∑x2
2i

∑x2
3i

∑x2
4i

∑x2
5i

. =

2

• Highlighted summations can be calculated with a single
matrix-vector multiplication

• Only highligted summation needs to be
calculated in a kernel as the last step.

• Other summation results are stored in texture
memory.

How to Handle Massive Data
• Overlay CUDA-Grids on resulting symmetric correlation matrix

(lower-diagonal).

• Determine chunk size and process each chunk sequentially.

• Transfer corresponding time-series data to texture memory.

• Process current chunk then load subsequent chunk (in column major
order)

ρ11

ρ21 ρ22

ρ12

ρ31

ρ41 ρ42

ρ32

ρ51

ρ61 ρ62

ρ52 ρ55

ρ65 ρ66

ρ56ρ53

ρ63 ρ64

ρ54

ρ33

ρ43 ρ44

ρ34

Overall Algorithm

1. Load data chunk to device memory

2. Calculate with cublasSgemv,
• save resulting vector on device memory

3. Square data matrix by using thrust library transform routine
and calculate with cublasSgemv.

• save resulting vector on device memory

4. Load source and destination time series into texture
memory.

5. Calculate pairwise correlation on GPU
• save resulting matrix chunk on disk

6. Return to step 4

Functional Connectivity Matrix for 8000 voxels

Method Conventional Proposed

8142 voxels ~30 minutes 28 seconds

82926 voxels ~3 days 24 minutes

Case Study 2:
Functional Parcellation / Clustering

• Consider a weighted Graph G=(V, E, A)

– it is possible to partition G

– into smaller components G1 and G2 where G = G1 U G2 with
specific properties defined over A

?

G1

G2

How to Partition the Graph?

• Problem:
finding an optimal graph (normalized) cut is NP-hard

• Solution:
approximation & heuristics

• Approximation: spectral graph partitioning
– Partitioning the graph by spectral analysis

(spectrum of a matrix is the set of its eigenvalues)

– e.g. Spectral clustering

Based on Laplacian Matrix, or Graph Laplacian

Spectral Clustering

• SC is sensitive to the scaling parameter of the RBF kernel

• Main difference between algorithms is the definition of A = func(W)

Major Operations and Parallelization of
Spectral Clustering

• Sparse vector-vector multiplications

• Matrix-vector operations

• Matrix problems usually imply huge possibility to
parallelization
– Compute-intensive

– Matrices are able to be divided by rows, columns or blocks

Algorithm Flow

• Step-wise analysis
– Consists of comparisons with either a CPU implementation or GPU implementations

Calculate distance from each point to others

Distance matrix

Multiply feature matrix with its transpose

using CUBLAS

Launch 1 additional kernel to calculate

distance matrix

11,60

31,40
35,42

65,01

96,80

3,33 5,24 6,12 8,45
14,49

0,00

20,00

40,00

60,00

80,00

100,00

120,00

400 800 1000 1200 1600

Ti
m

e
 in

 m
s

Number of Samples

CPU vs GPU

CPU

GPU

Extract closest points row-wise from its diagonal

Sort rows of the distance matrix

1. Insertion sort with kernel

2. Sequential sort with thrust::sort

Find k-nearest neighbor

428,71

874,69

1089,35

1384,73

1870,25

92,96

457,06

786,72

1127,01

1916,39

0,00

500,00

1000,00

1500,00

2000,00

2500,00

400 800 1000 1200 1600

Ti
m

e
 in

 m
s

Number of Samples

Insertion sort vs Thrust sort

Insertion sort

Thrust seq.

Convert distance matrix to a sparse similarity matrix

Use radial basis kernel in order to calculate

similarities between data points

local scaling parameter σi calculated as

the mean of row i in distance matrix S

Sum of each element in a row on GPU

1. sequential reduction using Thrust

2. Matrix-vector multiplication CUBLAS

Affinity (Similarity) Matrix

j i 0

j i
/2s-s ji

ji

ji

A

eA
ji

1,9

3,4 3,8
4,4

7,1

1,7

3,1
4,1

4,9

7,4
6,3

10,4
11,4 11,1

14,6

0

2

4

6

8

10

12

14

16

400 800 1000 1200 1600

Ti
m

e
 in

 m
s

Number of Samples

GPU-CUBLAS GPU-Thrust CPU

Generate Laplacian

Compute diagonal matrix D as the row sum

of Affinity Matrix A

Using CUBLAS cublas_dgemv

Multiply with Similarity matrix on left&right

Using CUBLAS cublas_dgemm

Launch 1 additional kernel to symmetrize

*CPU implementation outperforms GPU

Data transfer cost supresses the computation cost

2,25

7,16

12,71
18,98

38,92

1,31 1,56
1,01 1,09 1,24

1,00

10,00

100,00

400 800 1000 1200 1600

Ti
m

e
 in

 m
s

(l
o

g)
Number of Samples

Spectral Computations CPU vs GPU

GPU

CPU

Pre-processing for K-means

Select k-largest Eigen values and their

corresponding Eigen vectors form matrix X

Using Thrust thrust::sort_by_key

Normalize rows of matrix X

1. Using CUBLAS cublas_Sgemm

2. Own implementation with kernels

*This step is a minor step and can be considered as a preprocessing step of K-
means step.

1,55
1,40

1,16
1,43

1,69

2,60
2,76 2,84 2,80

2,94

0

0,5

1

1,5

2

2,5

3

3,5

400 800 1000 1200 1600

Ti
m

e
 in

 m
s

Number of Samples

GPU-CUBLAS GPU-Own

K-means Clustering

Cluster rows of matrix Y with k-means

Two different utilization schemas

1. Shared memory reduction with texture

2. Dynamic block shared memory

Both have pros. and cons.

1. Suffers low shared memory usage
when number of cluster is low

2. Initiates consequtive loops to fill
shared memory when number of
cluster is high

2,54
1,84 1,58

2,07 2,44

3,65 3,19 3,36 3,36 3,78

43,02 56,09 61,81 66,67
110,40

1,00

10,00

100,00

1000,00

400 800 1000 1200 1600
Ti

m
e

 in
 m

s
(l

o
g)

Number of Samples

K-means on CPU vs GPU

GPU-Shared
GPU-Texture
CPU

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

400 800 1000 1200 1600 3200 6400 8200

Ti
m

e
 in

 m
s

Number of Samples

Overall Running Time

GPU Conf1

GPU Conf2

CPU Conf3

What we “actually” do?

What we “actually” do?

O. Firat, M. Ozay, I. Onal, I. Oztekin, F. T. Yarman Vural, "Functional Mesh Learning for Pattern Analysis of Cognitive
Processes",12th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), 2013

What we “actually” do?

• O. Firat, A. Temizel ”Parallel Spectral Graph Partitioning on CUDA” GPU Technology Conference, San Jose,
California, 2012

• O. Firat, M. Ozay, I. Onal, I. Oztekin, F. T. Yarman Vural, "Functional Mesh Learning for Pattern Analysis of Cognitive
Processes",12th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), 2013

What we “actually” do?

• O. Firat, M. Ozay, I. Onal, I. Oztekin, F. T. Yarman Vural, "Representation of Cognitive Processes Using the Minimum
Spanning Tree of Local Meshes",35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS), 2013.

What we “actually” do?

I. Onal, M. Ozay, O. Firat, I. Oztekin, F. T. Yarman Vural, "Analyzing the Information Distribution in the fMRI
measurements by estimating the degree of locality",35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBS), 2013.

What we “actually” do?

O. Ekmekci, O. Firat, M. Ozay, I. Oztekin, F. T. Yarman Vural, U. Oztekin "Mesh Learning for Object Classification using
fMRI Measurements",12th IEEE International Conference on Image Processing (ICIP), 2013.

• libFCL GUI

• Scalable Functional Connectivity Tools

Where we come in handy?

neuro.ceng.metu.edu.tr

orhan.firat@ceng.metu.edu.tr

