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ABSTRACT
In this study, we propose a new approach to construct

a two-level functional brain network. The nodes of the
first-level network are the voxels of the functional Mag-
netic Resonance Images (fMRI) recorded during an object
recognition task. The nodes of the network at the second-
level are the anatomic regions of the brain. The arcs of
the first level are estimated by a linear regression equation
for the meshes formed around each voxel. Neighbors of
each voxel are determined by using a functional similarity
metric. The node degree distributions of the voxel-level
functional brain network are then used to estimate the node
attributes and arc weights between the nodes of anatomic
regions at the second level. The region-level functional brain
network is then used to analyze the relationship among the
anatomic regions of the brain during a cognitive process. Our
results indicate that, although the neighborhood is defined
functionally, voxels tend to make connections within the
anatomic regions. Therefore, it can be deduced that nearby
voxels work coherently during the cognitive task compared
to the voxels apart from each other.

I. INTRODUCTION
Recently, the great challenge for understanding the so-

phisticated functional and physiological structure of brain
is accelerated by the aid of new imaging and computing
techniques [1]–[3]. Due to its non-invasive nature and high
spatial and acceptable temporal resolution, fMRI is used as
the primary source by the researchers to analyze how the
brain functions.

It is well-known that high voxel intensity values in fMRI
represent the active regions of the brain. Various studies,
such as [4]–[8], elaborated this fact to describe and to
identify the anatomic regions of the brain related to a specific
cognitive task by using vast range of image processing meth-
ods, such as Principal Component Analysis, Independent
Component Analysis, Search Light or Generalized Linear
Models to select the relevant voxels for that cognitive task.
However, considering the massively interconnected structure
of the brain, voxel intensity values fall too short to represent
the functions and structures of anatomic regions. The natural
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small-world network topology [9] of the brain suggests to de-
velop brain connectivity models and graph based techniques
to understand its task specific behavior.

Several studies in neuroscience [10]–[13] model the brain
as a network, in which nodes correspond to voxels and
edges between the nodes represent the connectivities among
the voxels. In their study Baldassano et al. [17] observe
that, different sub-regions of brain have different topology
of sub-connectivities among the voxels. In addition to the
varying topology, Zalesky et al. [18] shows that the strength
of connectivities of brain networks also differ in different
regions. In the Zalesky’s study, the connectivity differences
within regions were analyzed, yet interactions among the
anatomic brain regions under a cognitive task is not explored.

In this study, first-level brain network is constructed
using the voxels of fMRI data recorded during an object
recognition task as nodes. Neighbors of each voxel are
determined by using a functional similarity metric, meaning
that two voxels are connected if they have functionally
similar time series [15]. Note that in this approach, de-
pending on the functional similarity, two spatially adjacent
voxels may be connected or unconnected. The arc weights
of each mesh formed around a seed voxel are estimated by
a linear regression model fitted to the voxel intensity values,
as suggested by Ozay et al. [14]. These weights, called
Mesh Arc Descriptors (MAD), are assumed to represent the
strength of the relationships among the voxels and voxel
groups which correspond to anatomic regions. The mesh
size of each individual voxel (the number of functional
neighbors of a voxel) is estimated by optimizing Akaike’s
Final Prediction Error using the residual error of the linear
regression equation as suggested by [16], [22]. The optimal
mesh size indicates the degree of connectivity of a voxel
to its functional neighbors. By combining the functional
meshes formed around all voxels, a voxel-level network, in
which, the nodes represent the voxels and edges represent
the relationship among voxels, is obtained.

The suggested first-level network is then used to inves-
tigate the activities and interactions among and within the
anatomic regions. The interactions among the anatomic brain
regions are modeled and quantified by the node degree
distributions and distributions of the arc weights of the
suggested brain network. In this study, we assume that high
node degrees indicate strong relations among the voxels and
voxel groups. Therefore, the node degree distributions within



and between the anatomic regions indicate the strength of the
interactions among the voxels residing in same and different
anatomic regions, respectively.

The suggested two-level functional brain network is con-
structed for the data set generated by Mitchell et al. [19].
Then, the node degree distributions within and between
the anatomic regions are obtained. It is observed that the
connections formed within anatomic regions are denser than
connections formed between different regions. Hence, the
voxels residing in the same region are more correlated and
perform more similarly under a cognitive task than the
ones residing in separate regions. Moreover cortical regions,
which are known as the most sophisticated part of the brain,
form denser between and within connections. These findings
are substantially consistent with the neurological findings of
anatomical regions of the human brain.

II. DATASET
The dataset, employed in this study is collected by

Mitchell et al. [19]. There are noun labels and line drawings
from 12 semantic categories, namely; animals, body parts,
buildings, building parts, clothing, furniture, insects, kitchen
items, tools, vegetables, vehicles and other man-made items.
5 exemplars from each category are shown within each run,
therefore 60 concrete objects are used for each run, and
entire set of stimuli was presented 6 times during whole
experiment, in a different random order. In the dataset, voxels
are labeled using Automated Anatomically Labeling (AAL)
[21] which has 116 different regions in total.

Siemens Allegra 3.0T scanner is used to acquire functional
images, using a gradient echo EPI pulse sequence with TR
= 1000 ms, TE = 30 ms and a 60◦ angle. Seventeen 5-mm
thick oblique-axial slices were imaged with a gap of 1-mm
between slices. The acquisition matrix was 64 x 64 with
3.125 x 3.125 x 5-mm voxels.

III. FUNCTIONAL BRAIN NETWORK
Let us start by defining the first-level functional brain

network. Consider a data set of voxels D = {v(ti, s̄j) , rk} ,
where each voxel v(ti, s̄j) is labeled by an anatomic region,
rk, k = {1, 2, . . . , R} and R represents the number of
anatomic regions in the data set. ti represent the sample
at time instant i = {1, 2, . . . , T} and s̄j represent the
voxel coordinates, j = {1, 2, . . . ,M}. Note that s̄j is a
three dimensional vector which represents the x, y and z
coordinates of a voxel. The second-level functional regional
brain network is defined as FBN = {N,C}, where each
node, nk from the node set N represents an anatomic region
and the arc ck,l from the arc set C represents the degree
of connectivity between the nodes nk and nl. The labels
of the anatomic brain regions are defined by AAL. The
estimation of the node attributes nk and the estimation of the
arc weights ck,l will be described in the next subsections.

III-A. Forming Local Meshes Around Each Voxel
The initial step of constructing the first-level functional

brain network is to define a star mesh around each voxel,

Fig. 1: A sample functional connectivity matrix formed
by pairwise correlation measures. Each pairwise correlation
measure ρjk is calculated between the time series of distinct
voxels at location s̄j and s̄k.

called seed voxel. The neighbors of the seed voxel is
determined by a neighborhood system. In this study, the
neighborhood system is based on the functional similarity
of the time series between the voxel pairs, as suggested
in [15]. Functional similarity is defined as the measure
of similarity between time series of voxels. Therefore, the
functional connectivity depends on the similarity measure.
The similarity can be measured, for example, by estimating
the correlation or covariance between pairs of time series.
Therefore, the p-nearest neighbors of the seed voxel are
selected based on the correlation among the voxels. In this
approach p-nearest neighbors {v(ti, s̄k)}pk=1 of the seed
voxel are the voxels whose zero-order correlations with
the seed voxel are the maximum among the others. The
zero-order correlation coefficient ρjk between two voxels
at coordinates s̄j and s̄k is calculated by using the all time
instances t = (t1, t2, ..., tT ),

ρjk =
covjk

(
υ(t, s̄j), υ(t, s̄k)

)√
varj

(
υ(t, s̄j)

)
· vark

(
υ(t, s̄k)

) , (1)

where covjk is the covariance of the signals measured at two
voxels, and varj is the variance of the signals measured at
a voxel υ(t, s̄j) and ρjk ∈ [−1, 1].

The rationale behind using functional neighborhood is
the well known phenomenon that the spatially close vox-
els are strongly coupled during cognitive processes [20].
Moreover, the assumption of spatially surrounding neigh-
borhood in mesh arc descriptors for every voxel, may cause
redundant meshes and arc weights for further analysis. A
partial improvement to overcome this problem resides in
functional neighborhood concept and the information comes
from functional connectivity between distinct voxels. A sam-
ple functional connectivity matrix and pairwise correlation
estimation is illustrated in Fig. 1

Motivated by the functionality regarding to cognitive pro-
cesses, modeling relations between distinct regions or even
voxels in the brain, brings vast opportunities for our studies.
Functional connectivity is expected to capture patterns of
deviations between distributed and often spatially remote
regions in brain and constructed using an inter-regional
analysis. In this study we employed functional connectivity
in MAD by selecting functional neighbors for each voxel



Fig. 2: Steps to obtain functional regional brain network

and constructing the meshes based on the functional neigh-
borhood which results in a more discriminative information
source.

III-B. Estimating the Mesh Arc Descriptiors
The arc weights of each local mesh, formed around

a voxel, indicate the relationship between the seed voxel
v(ti, s̄j) and its p- functionally nearest neighbor voxels
{v(ti, s̄k)}pk=1, where ti represent the sample at time instant
i = {1, 2, . . . , T} and s̄j represent the voxel coordinates
j = {1, 2, . . . ,M}. The arc weights ai,j,k at the ith time
sample between voxels located at s̄j and s̄k are called Mesh
Arc Descriptors (MAD).

In the mesh model, the relationship among a seed voxel
v(ti, s̄j) and its neighboring voxels are defined as the linear
combination between a seed voxel and its p-nearest neighbor
voxels as follows;

v(ti, s̄j) =
∑
s̄k∈ηp

ai,j,kv(ti, s̄k) + εi,j(p), (2)

where εi,j(p) is the error obtained during the estimation of
the MAD features. MAD features are estimated using the
Levinson - Durbin recursion [26] in which the variance of
error εi,j(p) of (2) is minimized.

A critical issue is to estimate the optimal mesh size p,
which indicates the degree of connectivity of a node to
its functional neighbors. The information theoretic method
suggested for estimating the node degrees will be explained
in subsection III-C.

III-C. Estimating the Optimal Mesh Sizes and Con-
structing the First-Level Functional Brain Network

The size of a mesh p defines the number of the neighbor-
ing voxels of a specified seed voxel in a functional mesh.
As the mesh size increases, the seed voxel makes denser
connections with an increased complexity whereas the model
better fits the data with decreased error term εi,j(p) of
(2). Therefore, we [22] suggest to optimize the trade-off
between the degree of fit, represented by the variance of
error εi,j(p) and the complexity, represented by the mesh
size p by minimizing Akaike’s Final Prediction Error (FPE)
[23]. For each voxel at s̄j , we estimate an optimal mesh size
p̂j , representing the optimal number of connectivities.

First, the squared error of (2) is calculated for each voxel
and for each mesh size, as follows,

εi,j (p)
2

=

v (ti, s̄j)−
∑
s̄k∈ηp

ai,j,kv (ti, s̄k)

2

. (3)

Then, the expected error for each voxel over all time samples
is approximated by

Êj = Ei(ε
2
i,j)
∼=

1

T

T∑
i=1

ε2
i,j , (4)

where Ei(·) is the expectation operator over the time instants
ti for a single voxel. Finally, we minimize Akaike’s Final
Prediction Error (FPE) in (5) with respect to the mesh size
p so that we obtain the optimal mesh size for each voxel
separately.

FPEj,ρ(p) = Êj,ρ

(
M + p+ 1

M − p− 1

)
(5)

where M represents the number of voxels. FPEj,ρ(p) is cal-
culated for mesh size in a pre-defined interval [pmin, pmax].
After that, the optimal mesh size for voxel at coordinates s̄j
is selected as the one that minimizes FPEj(p) using,

p̂j = arg min
p∈[pmin,pmax]

(FPEj(p)) . (6)

In the above formulation, p̂j represents the optimal mesh
size for a voxel at coordinates s̄j , estimated using FPE and
[pmin, pmax] is an interval which is determined empirically.

The local functional meshes with optimal mesh sizes and
mesh arc descriptors are concatenated to construct a first-
level functional brain network. In this network, each voxel
is connected to its functionally closest p-nearest neighbors,
where the optimal value of p varies for each voxel, showing
the degree of connectivity of a node. Although the network
topology doesn’t change through the cognitive task, the arc
weights vary according to stimulus shown to subject. There
are two directed arcs between each pair of nodes, where the
arc weights are estimated by the linear regression model of
equation 2.

The first-level functional brain network constructed in
this study is too large to extract information about the
interactions among the brain regions. There are approxi-
mately 20,000 nodes and 400,000,000 arc weights to evalu-
ate the anatomical regions and their relations. Also, there
are substantial amount of redundancies among the local
meshes. Therefore, one needs to compress the information
represented in the voxel-level network and reduce the redun-
dancies among the local meshes.

There are many approaches in Graph Theory to reduce
the number of nodes and arcs of a network [27], [28]. In
this study, we suggest a simple method to modify the first-
level functional brain network in order to obtain a second-
order functional regional brain network which models the
relationship among the anatomic regions. For this purpose,
we define a new network topology, FBN = {N,C},
where each node, Nk represents an anatomic region and
the arc ck,l from the set C represents the total number



Fig. 3: Interactions between AAL anatomical regions. Rows and columns from 1 to 116 represents AAL region ids. Regions
in the left red square are the ones connected most densely with other regions and regions in the right red square are the
ones connected most densely within itself.

of connections between the regions nk and nl. The total
number of connections, ck,l are obtained from the first-level
functional brain connectivity network, by simply counting
the number of voxel connections between each anatomic
region pair. The node attributes nk, of the FBN are assigned
by estimating the expected values of the node degrees in
each anatomic region. The total number of connections ck,l,
formed between the voxels belonging to region rk and
rl defines the edge weight between the nodes nk and nl
corresponding to the regions rk and rl. Notice that, the
connections formed within a single anatomic region are
collapsed and are not shown in the second-level functional
regional brain network.

III-D. Estimating the Node Degree Distributions of the
Functional Regional Brain Network

After constructing the second-level functional regional
brain network for a participant, we can separate the arcs
ck,l of the FBN in two disjoint sets, as the within region
and between region arc sets. If the arc connects two voxels
belonging to the same region labeled with rk, it’s represented
by ck,k and ck,k ∈ Čk where Čk represents the set of all arcs
within the region labeled with rk. On the other hand, if an

arc ck,l is formed between the voxels belonging to separate
regions rk and rl, then ck,l ∈ Ĉkl where Ĉkl denotes the
connections made between the voxels belonging to region
rk and region rl. Node degree distributions are estimated
for all the within region Ĉk and between region arc sets
Ĉkl.

The estimated p̂j value defines the degree of connectivity
at a specific location of the brain. With higher values of
p̂j , we expect that the corresponding voxel make denser
connections during the cognitive task. Similarly, activation
in an anatomic brain region can be identified in terms of the
total connectivity formed by the voxels located in that region.
If Čk dominates the sum of Ĉkl value, then we may conclude
that the anatomic region rk is highly connected within itself.
In other words, the voxels belonging to the anatomic region
labelled with rk tend to make more connections with the
voxels also in the same region rk rather than the ones in
other anatomic regions. On the other hand, the evidence of
greater Ĉkl sum over all regions other than rk reveals the
fact that region rk is highly correlated with other regions.

Fig. 2 represents the steps to obtain second-level func-
tional regional brain network. As it can be seen, after func-
tional mesh is formed around all voxels using a functional



Fig. 4: Histogram of functional & spatial neighborhood
match. For each anatomic region, sets of nearest 5 spatial
and densest 5 functional neighbors are compared. Vertical
axis represents number of regions and the horizontal axis
represents the number of common elements in both sets.
(Top 5 neighbors are selected since the minimum number of
functional connections for a region is 5.)

neighborhood, they are used to form a first-level voxel-
level network, where the number of edges among voxels are
optimized using FPE. As a result, the functional regional
brain network is formed by representing all of the voxels
within a region as a single node and represents the total
number of arcs between regions as the edges.

IV. EXPERIMENTS
In our experiments, we estimated the interactions between

and within anatomic regions using the data set collected
by Mitchell et al. [19]. Then, we constructed a functional
mesh around each voxel using zero-order correlation as the
distance metric. After that, the optimal mesh size represent-
ing the degree of connectivity is calculated for each voxel
by minimizing Akaike’s Final Prediction Error. We assumed

Fig. 5: Between connectivity degree of each node is plotted
in sorted order. Each bar represents a region. Connectivity
degree of a region is summation of all outgoing edges

that, the greater the number of neighbors, the more active
the specified voxel during the cognitive task. From voxel-
level interactions, we moved to region-level and explored
the interactions of functional regional brain network. The
total number of interactions between the anatomic regions,
represented in functional regional brain network shows the
strength of connectivity between the regions during the
cognitive task. Moreover, the total number of interactions
within region, observed in first-level brain network, reflects
the degree of connectivity within the specified anatomic
region.

Fig. 3 shows the degree of connectivities representing
relations between regions. Note that, the diagonal of the ma-
trix represents the within region connectivities whereas off
diagonal entries represent the pairwise relationships among
two distinct regions. The darker red colors in the diagonal
of the matrix indicates that the regions are connected more
densely within itself whereas darker blue is an indicator
of sparse connectivities within regions. As it can be seen
from Fig. 3, almost all regions are primarily connected to
themselves. More precisely 46% of all edges are found
as within region connections. Furthermore, % 91 of all
anatomical regions are primarily connected to themselves,
and the remaining ones are generally the ones including a
small number of voxels.

Functional connectivity enables denoting relationships
among spatially-distinct brain regions that correlate in a
cognitive task [24], [25]. In other words, the voxels in
an anatomic region tend to make connections with the
voxels belonging to the same region. Notice that, since the
neighborhood is defined functionally, a spatial constraint
was not applied during the selection of p-nearest neigh-
bors. However, we observed that the functionally nearest
neighbors of a seed voxel are mainly the ones that reside
in the same anatomical region with the seed voxel. Fig. 4
reflects the histogram of functional and spatial neighborhood
match. For each anatomic region, we detected the 5 anatomic

Fig. 6: Within node degrees are plotted in sorted order
which calculated as size(Čk)/size(rk). Each bar represents
a region.



Fig. 7: Illustration of functional regional brain networks from sagittal, axial and coronal views. Spheres are center points of
regions and edges are interactions between them. Thicker and red edges demonstrate denser connection between corresponding
regions, whereas thinner and blue edges demonstrate sparse connection. Radius of spheres represents size of the anatomical
region in terms of voxel numbers. Edge weight between two regions rk and rl is calculated as division of ck,l with total
number of voxels in both regions rk and rl. [29]

regions which make the densest functional connections with
the specified region and we explored whether they are also
the spatially closest regions to that specified region. From
Fig. 4 it can be seen that, among 5 regions which make the
densest connection with a specified region, generally 3 or 4
of them are also the in the top 5 spatially closest regions
list. In other words, regions that are functionally connected
are usually spatially close to each other.

Within and between connectivity degree vary by region.
Right superior temporal pole, left superior temporal pole,
left superior frontal gyrus - medial part, left area triangularis,
left middle temporal pole, right middle temporal pole, right
superior frontal gyrus - medial part, left supplementary
motor area, left anterior cingulate gyrus, left middle frontal
gyrus - lateral part are the regions have the densest connec-
tivity within themselves, respectively. Whereas right superior
temporal pole, left crus I of cerebellar hemisphere, left
superior frontal gyrus - medial part, left superior temporal
pole, left superior frontal gyrus - dorsolateral, left fusiform
gyrus, right superior frontal gyrus - medial part, left calcarine
sulcus, left middle frontal gyrus - lateral part, left middle
temporal pole are the regions have the densest connectivity
with other regions. Fig. 5 and Fig. 6 demonstrates the varying

within and between connectivity degrees, respectively.

We also observed that an anatomic region makes dense
functional connections with a few other regions and it either
forms sparse connections or does not form any connection
with the remaining regions. In other words, among distinct
regions either sparse or no connections are formed. There-
fore, our functional regional brain network also includes a
small-network topology in which a node is connected to a
few neighboring nodes.

Active functional connectivity patterns in Fig. 7 are also
substantially consistent with anatomical findings. A path-
way existing from optic nerves (partially) to brain stem
to occipital lobe shows us that the participant is presented
something and both reflex and central vision system is aware
of that. Dense interaction within occipital lobe demonstrate
that participant understands what is shown to him since
that part of the brain is mostly active when a person tries
to understand what he observes. In our model, within the
frontal lobe denser but weaker activities are formed, which
is consistent with the finding that frontal lobe of the brain
is responsible for high level functions and requires denser
connections. Furthermore, the dense connections within the
limbic system shows that the participant’s memory related



to presented objects are activated. Tight interaction between
region 83 and 87 demonstrates collaborative work of smell
and vision takes great role within object recognition task.
Furthermore, connectivity between region 15, which resides
in the Broca’s area, and 83 shows the interaction between
remembering the name of object and visual stimulus.

V. CONCLUSION
In this study, we proposed a region-level brain network,

called functional regional brain network, constructed by con-
verting voxel-level connectivities into connectivities among
regions. Our purpose was to explore how the pre-defined
anatomic regions of the brain interact during a cognitive task.
While anatomic regions represent nodes of this network,
aggregation of connectivity patterns of voxels located within
the anatomic regions defines the edges.

We observed that, voxels are inclined to make connections
within their regions rather than with the ones from other
regions. In other words, connections within region are much
more than the connections between region. Furthermore,
we explored that the regions make the densest connections
with the spatially closest ones. Therefore, we concluded
that, functionally similar voxels are also the ones which are
spatially closer to each other. From functional regional brain
network, we observed that a region makes dense connections
with a few of its spatially nearest neighbors and makes sparse
or no connections with the remaining regions. Our finding
is consistent with the small-network topology of brain.

In this study, we only employed the node degree distri-
butions of regions to represent a functional brain network.
Notice that, we obtained a single topology for all cogni-
tive states where the edges correspond to the number of
interactions among regions. However, although they share
the same optimal mesh size, different classes have different
MAD values among voxels. Therefore, as a future work, we
will also analyze how the distributions of arc weights (MAD)
vary among anatomic regions. Moreover, since the network
topology is same for all classes while the MAD values vary,
they can be used as features to classify various cognitive
states.
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