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Abstract—An information theoretic approach is proposed to
estimate the degree of connectivity for each voxel with its
neighboring voxels. The neighborhood system is defined by
spatial and functional connectivity metrics. Then, a local mesh
of variable size is formed around each voxel using spatial or
functional neighborhood. The mesh arc weights, called Mesh Arc
Descriptors (MAD), are estimated by a linear regression model
fitted to the voxel intensity values of the functional Magnetic
Resonance Images (fMRI). Finally, the error term of the linear
regression equation is used to estimate the mesh size for a voxel by
optimizing Akaike’s information Criterion, Bayesian Information
Criterion and Rissanen’s Minimum Description Length. fMRI
measurements are obtained during a memory encoding and
retrieval experiment performed on a subject who is exposed to
the stimuli from 10 semantic categories. For each sample, a k-
NN classifier is trained using the Mesh Arc Descriptors (MAD)
having the variable mesh sizes. The classification performances
reflect that the suggested variable-size Mesh Arc Descriptors
represents the mental states better than the classical multi-voxel
pattern representation. Moreover, we observe that the degree of
connectivities in the brain greatly varies for each voxel.

I. INTRODUCTION

Recent studies on modeling and analysis of fMRI data
employ the full spatial pattern of brain activity and use pat-
tern classification algorithms to decode the subtle information
represented in a cognitive state [1]. Identification of patterns
that are predictive of cognitive states and using them in
classification are called Multi-voxel pattern analysis (MVPA).
A pioneering study on MVPA methods to decode the cognitive
states from the fMRI data was conducted by Haxby et al. [2].
Since then, many studies [3], [4], [5], [6], [1], [7] employed
MVPA for various cognitive state classification problems. In
classical MVPA approaches, generally, cognitive states are
represented by concatenating the voxel intensity values under
a feature vector and training a well-known classifier such as
k-Nearest Neighbor (k-NN), Support Vector Machine (SVM)
or Naive Bayes.

Recently there has been interest in decoding brain states
using fMRI in pattern recognition community. Plumpton et al.
[8], [9] proposed two pattern recognition approaches for on-
line classification of fMRI data. While the former uses linear
and ensemble classifiers to decode cognitive states, the latter
performs a semi-supervised ensemble update strategy. More-
over, Gramfort et al. [10] used supervised learning methods
to decode the visual percept formed by four letters during a
word reading task. In their study Haufeld et al. [11] employed
various kinds of supervised self-organizing maps (SSOM) to

decode and visualize fMRI voxel patterns assigned to multiple
categories.

In [12], Ozay et al. propose a local mesh model in which
relationships among spatially close voxels are used as features.
These features, called Mesh Arc Descriptors, are shown to
discriminate the cognitive states better than voxel intensities.
In a further study, Firat et al. [13] model the relationships
among functionally close neighbors and use the arc weights
of functionally connected voxels to train a classifier. These
studies show a significant improvement on the performance
of the algorithms developed for cognitive state classification.
In both studies, the number of neighboring voxels is fixed
to form the mesh assuming that each voxel is connected
to the same number of neighboring voxels to represent a
cognitive process. In [14], [15], Onal et al. adopt a set of
information theoretic criteria to estimate the optimal mesh size
for each participant and sample. Although these approaches
reflect the distributivity of information in the brain for an
individual participant and sample, they form the local mesh
of the same size around each voxel belonging to a sample.
However, as Baldassano et al. [16] states, different sub-regions
of brain have different degree of sub-connectivities among the
voxels. Furthermore, according to Zalesky et al. [17], both the
topology and the strength of connectivities of brain networks
differ in different regions.

In this study, we propose an information theoretic approach
to model the spatial and functional brain connectivity among
the voxels for a cognitive process. The degree of connectivity
of a voxel is represented by the ”optimal” size of a local mesh,
formed around each voxel. The size of the mesh is estimated
by optimizing three well-known information theoretic criteria
namely Akaike Information Criterion (AIC) [18], Bayesian
Information Criterion (BIC) [19] and Minimum Description
Length (MDL) [20]. Unlike previous approaches, this study
aims to form meshes of variable sizes to detect how the
information distribution varies in different parts of the brain.
The local meshes are formed in two neighborhood systems,
where nearest neighbors of a seed voxel are either the ones
that are spatially closest to the seed voxel, or the ones whose
Pearson correlations are highest among others.

The Mesh Arc Descriptors extracted from meshes of vari-
able sizes are used to train a k-NN classifiers to classify
cognitive states. Our classification performances indicate that
the proposed spatial and functional brain connectivity models
represent the cognitive states with a higher accuracy than
classical MVPA methods.



II. FMRI EXPERIMENT AND DATASET

Our dataset consists of words belonging to 10 categories,
namely, fruits, vegetables, furniture, animals, herbs, clothes,
body parts, chemical elements, colors and tools. In the exper-
iments, a participant is shown a list of words belonging to a
specified category in the encoding phase. fMRI measurements
recorded in this phase are used to train the classifier. Then, the
participant solves mathematical problems in the delay period.
Finally, in the retrieval phase, the participant is shown a word
belonging to the same specified category and is expected to
recognize whether the word is included in the list or not [21],
[22]. The fMRI measurements recorded during the retrieval
phase are used to test the classifier. Therefore, training data
are collected during the encoding phase whereas test data
are collected during the retrieval phase. The experiments are
repeated in 8 runs. The region of interest (ROI) is the lateral
temporal cortex with 8142 voxels that reside in this ROI.

In this study, fMRI intensity of a voxel at coordinates s̄j ,
measured at time instant ti, is represented as v(ti, s̄j) where
s̄j is a three dimensional coordinate vector s̄j = (xj , yj , zj).
Note that, i = 1, 2, ..., N and j = 1, 2, ...,M , where N is the
number of samples and M is the number of voxels. The fMRI
intensities measured at all voxel coordinates s̄j for a single
time instant ti are used to form a 1 × M vector, which is
called a sample vector. By concatenating each sample vector,
we form our dataset D{v(ti, s̄j)} of size N × M . During
our experiments, each sample measured at time instant ti is
assigned a class label ci.

III. MESH ARC DESCRIPTORS (MAD)

In their study Ozay et al. [12] proposed a mesh model
to classify cognitive states, in which a local mesh is formed
around a seed voxel v(ti, s̄j) with its p-nearest neighbors
{v(ti, s̄k)}pk=1.

In this study, we form two types of local meshes, depending
on the neighborhood system, ηp. The first neighborhood system
is based on the spatial distance between the voxels, whereas the
second system measures the functional similarity between the
time series of the voxels. In order to form the local meshes
with respect to spatially p-nearest neighborhood, p number
of voxels having the smallest Euclidean distance between the
coordinates of the seed voxel and its neighbors are selected
in the mesh of the voxels, {v(ti, s̄k)}pk=1 [12]. On the other
hand Firat et al. [13] defined the p-nearest neighborhood
functionally, where p-nearest neighbors are selected based
on the functional connectivity between the seed voxel and
the surrounding voxels. In this approach p-nearest neighbors
{v(ti, s̄k)}pk=1 of a seed voxel are the ones where the Pearson
correlations with the seed voxel are the highest p voxels.

Figure 1 shows a local mesh formed around a seed voxel.
While the voxel intensity values are represented as the vertices
of the local mesh, the relationships between the seed voxel
v(ti, s̄j) and its p-nearest neighbors {v(ti, s̄k)}pk=1 are repre-
sented with the arc weights ai,j,k between the corresponding
vertices. The arc weights ai,j,k which represent the of relations
between a voxel and its neighbors are called Mesh Arc De-
scriptors (MAD). During theexperimental analysis, we observe
that the relationship between a seed voxel and its neighbors
are very close to linear. Therefore, we model each voxel as

υ(ti, s̄j)

υ(ti, s̄o)

υ(ti, s̄n)υ(ti, s̄m)

υ(ti, s̄l)

ai,j,o

ai,j,nai,j,m

ai,j,l

Fig. 1: A local mesh representing the relationships among the
seed voxel v(ti, s̄j) and its p-nearest neighbors {v(ti, s̄k)}pk=1
with the arc weights ai,j,k

a linear combination of its neighbors and estimate the MAD
features using the following equation:

v(ti, s̄j) =
∑
s̄k∈ηp

ai,j,kv(ti, s̄k) + εi,j(p) (1)

where the seed voxel is v(ti, s̄j), the p-nearest neighbors
are {v(ti, s̄k)}pk=1. εi,j(p) is the error obtained during the
estimation of the MAD features ai,j,k of local mesh formed at
the time instant ti and for the seed voxel having coordinates
s̄j .

There are many ways of estimating the MAD features. One
popular method is to minimize the regularized least squares
error of εi,j(p), using Ridge regression [ref itir]. In other words
we minimize

L = εi,j(p) + λ
∑
s̄k∈ηp

ai,j,k. (2)

Another method is to order the neighbors of each voxel from
the most similar to least similar ones and represent each mesh
as a one dimensional linear predictive model. In this study, we
employ both Ridge regression and linear predictive model and
observe that the estimated parameters are very similar to each
other. For this reason , we provide the results only obtained
from the linear predictive coding [23] via Levinson-Durbin
recursion, lpc(d, p) [?] , which minimizes the variance of error
εi,j(p) of (1). Note that in lpc(d, p), d is a 1-dimensional
series, starting at the seed voxel and ending at the pth nearest
neighboring voxel, which is sorted by the distance between
the seed voxel and its neighbors. Therefore, d = {v(ti, s̄j) ∪
{v(ti, s̄k)}pk=1} and p is the mesh size.

Mesh Arc Descriptors are, then, used to form a mesh arc
vector āi,j = [ai,j,1, ai,j,2, ...ai,j,p] of size 1× p around voxel
v(ti, s̄j). By combining the mesh arc vectors for all voxels
at time instant ti, we form mesh arc vector for sample at ti,
Ai = [āi,1, āi,2, ...āi,M ] having size 1×p.M . Finally, mesh arc
vectors for all samples belonging to a participant are combined
to form the feature matrix F = [AT1 , A

T
2 , ...A

T
M ]T of size

Nxp.M .



IV. INFORMATION CRITERIA TO ESTIMATE THE DEGREE
OF VOXEL CONNECTIVITIES

The size p of a local mesh defines the number of neigh-
boring voxels, which are connected to the seed voxel. In
other words, p defines the degree of connectivity at a specific
location of the brain. If the mesh size p is large, the seed
voxel makes dense connections with its neighbors whereas a
small p value indicates a sparse connection. As the mesh size
p increases, the error term εi,j(p) of (1) decreases and the
model fits the data better. On the other hand, the mesh size p
is equal to the number of mesh arc descriptors extracted from
a mesh. Since the mesh arc descriptors are used as features
in our system, the complexity of our system increases with
an increase in p. The trade-off between the degree of fit and
complexity can be optimized by some information theoretic
criteria. In order to find the optimal mesh size, we adopt
three information theoretic criteria namely Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and
Minimum Description Length (MDL). In this study, we applied
the same criteria to estimate the optimal sizes of both spatially
and functionally formed local meshes.

In order to optimize the above mentioned information
criteria, first, the squared error of (1) is calculated for each
voxel and for each mesh size, as follows,

εi,j (p)
2

=

v (ti, s̄j)−
∑
s̄k∈ηp

ai,j,kv (ti, s̄k)

2

. (3)

In this study the expected value of squared error is ap-
proximated for a seed voxel v(ti, s̄j) by averaging the errors
obtained during the formation of a local mesh around the seed
voxel v(ti, s̄j) over all time instants as

Êj (p) = Ei
(
εi,j(p)

2
) ∼= 1

N

N∑
i=1

εi,j(p)
2 , (4)

where Ei(·) is the expectation operator taking the average over
all time instants ti for a single voxel.

Our goal is to estimate the optimal mesh size for each voxel
using the error variance of equation 3. Then, this variable size
of local meshes reflect how the information distribution varies
around each voxel.

A. Akaike Information Criterion (AIC)

If the information distribution in the brain were known,
we would compute the Kullback - Leibler (KL) divergence
between the true model and our local mesh model of size
p and select the order which minimizes KL. Therefore, we
would measure the information loss of using our model. Since
the information distribution in the brain is unknown, we can
approximate it by using Akaike Information Criterion (AIC).
The optimal mesh size estimated using AIC is the one that
leads to minimum information loss during the approximation
of distribution in the brain.

In order to estimate the optimal mesh size for the voxel
at coordinates s̄j with AIC [18], the following criterion is
minimized with respect to the mesh size p:

AICj(p) = ln (Êj) +
2p

M
(5)

where M is the number of voxels. After calculating the
AICj(p) for various mesh sizes, the optimal mesh size for
voxel at coordinates s̄j is selected as the one minimizing
AICj(p),

p̂AICj = arg min
p∈[pmin,pmax]

(AICj(p)) (6)

where p̂AICj is the optimal mesh size for voxel at coordinates
s̄j and [pmin, pmax] is an interval determined empirically, in
which the optimal mesh size lies.

B. Bayesian Information Criterion (BIC)

While AIC assumes that true model is unknown and can
only be approximated, Bayesian Information Criterion (BIC)
assumes that the true model is among candidate models (local
mesh models of various sizes ) and tries to detect it. BIC
aims to point out the model having optimal mesh size p as
the one maximizing the probability of generating the data. By
assuming that the error terms have a normal distribution, we
adopt the BIC (BICj(p)) to estimate the optimal mesh size
for each voxel at coordinates s̄j as follows;

BICj(p) = ln
(
Êj(p)

)
+
p ln(M)

M
, (7)

where M is the number of voxels. The mesh size p minimizing
BICj(p) among various others is selected as the optimal mesh
size estimated using BIC as;

p̂BICj = arg min
p∈[pmin,pmax]

(BICj(p)) , (8)

where p̂BICj refers to the optimal mesh size for voxel at s̄j ,
where the experiment is conducted using BIC.

C. Minimum Description Length (MDL)

Minimum Description Length (MDL) assumes that the best
model is the represented with the smallest description length
without high information loss. Therefore, MDL estimates the
optimal mesh size as the one that leads to compact represen-
tation without a significant loss. As explained before, MDL
optimizes a trade-off between the degree of fit (without high
information loss) and the complexity (smallest representation).
MDL is adopted to estimate the optimal mesh size for a voxel
at coordinates s̄j using the following equation:

MDLj(p) = Êj(p)

(
1 +

(
p+ 1

M

)
ln (M)

)
, (9)

where M is the number of voxels. After MDLj,(p) is
estimated for the mesh sizes in the pre-defined interval
[pmin, pmax], the optimal mesh size for voxel at coordinates
s̄j is selected as the one minimizing MDLj(p) , as follows;



p̂MDL
j = arg min

p∈[pmin,pmax]

(MDLj(p)) , (10)

where p̂MDL
j refers to the optimal mesh size for voxel at s̄j

estimated using MDL.

V. DEGREE OF CONNECTIVITY IN THE BRAIN

The above approach for estimating the optimal mesh size,
formed around each voxel shows the degree of spatial and
functional connectivities of a voxel and its neighborhood. The
validity of the suggested approach requires a throughout study
from the perspective of cognitive science. However, in this
study, we suffice to use the suggested model for mental state
classification and compare the classification performances of
the suggested model to the classical MVPA methods. We
expect that the performance of each model indicates the
validity or representation power of it.

Fig. 2 represents the optimal mesh sizes estimated for
each voxel using spatial (A) and functional (B) neighborhood.
Moreover, corresponding histograms of optimal mesh sizes
estimated using spatial (C) and functional (D) neighborhood
are also represented. In Fig. 2, the nodes correspond to
voxel coordinates in Lateral Temporal Cortex. The colors of
nodes represent the degree of connectivity of voxel. In other
words, color represents the optimal mesh size estimated for
the voxel. Notice that, the darkest red color represents the
largest optimal mesh size whereas the darkest blue represents
the smallest optimal mesh size. Remaining colors in between
are assigned to voxels based on their optimal mesh size in
a scale [24]. As it can be seen, the voxels having similar
number of connections with their neighbors tend to group
together and the separation between the groups are more
visible in spatial neighborhood. It is interesting to note that
functional connectivity has a smoother histogram compared to
the spatial connectivity. This observation may indicate that the
voxels in lateral temporal cortex is more likely related to each
other according to functional neighborhood, for the underlying
cognitive processes.

VI. IMAGE PROCESSING

Before extracting the MAD features, the fMRI data is
enhanced by a series of pre-processing operations. These
operations are accomplished by some standard techniques
using Statistical Parametric Mapping toolbox. The details of
the pre-processing techniques can be found in [12]. Then,
the data is normalized using standardized z-scores. GLM
analysis is conducted to z-score maps, using a design matrix
composed of 22 columns (1 column for bias, 1 column
for scanner-drift, 20 columns for encoding and decoding of
10 semantic categories). Design matrix is convolved with a
double-gamma hemodynamic response function, except first
two columns. Using a Generalized Linear Model (GLM)
the beta weights, betamap are estimated. GLM model is
constructed and betamap values are estimated using libORF
(www.ceng.metu.edu.tr/ e1697481/libORF.html). Therefore, in
this study we employ the betamap parameters, instead of the
raw voxel intensity values.

VII. CONSTRUCTION OF MAD FEATURES

Optimal mesh size for each voxel is estimated using AIC,
BIC and MDL from the training data. The MAD features
having variable mesh sizes for various local meshes are
concatenated to form the feature vector for a training sample
of size 1 × DAIC where DAIC =

∑M
j=1 p̂

AIC
j , 1 × DBIC

where DBIC =
∑M
j=1 p̂

BIC
j and 1×DMDL where DMDL =∑M

j=1 p̂
MDL
j using AIC, BIC and MDL respectively. Using the

training feature vectors, and their corresponding class labels
we train a k-nearest neighbor (kNN) classifier. When a new
test sample is queried, it is converted into the same feature
vector form as the training feature vectors and using the k-NN
classifier, a class label is assigned to it. Note that we have
two types of local meshes: The first type of local meshes
are constructed with respect to the spatial neighborhood,
whereas the second one is formed by using the functional
neighborhood. Therefore the MAD features are obtained in
two different neighborhood systems.

VIII. CLASSIFICATION USING MAD FEATURES

The classification is applied to both functionally connected
and spatially connected MAD features. Since our dataset
includes 8 runs, we train and classify the model run-wise for
functionally connected MAD features. By run-wise we mean
that a connectivity matrix consisting of pairwise correlations
among voxels is computed separately for each run and clas-
sification is also performed using functionally formed meshes
from each run. Therefore, we train and test 8 classifiers for
functionally formed meshes. For the spatially connected MAD
features, we train the classifier over the entire runs, since the
spatial connectivity is assumed to remain unchanged over the
runs. We also test the performances run-wise for this case
and compare the performances. In that case, classification is
computed for each run separately for spatially formed meshes.
Three classification schemes, used in our experiments can be
summarized as follows:

S1 Spatial neighborhood, Whole data classification:
MAD features are extracted using spatially nearest
neighbors. Single classifier is trained using MAD
features of whole training data.

S2 Spatial neighborhood, Run-wise classification:
MAD features are extracted using spatially nearest
neighbors. Different classifiers are trained for each run
using MAD features of the training data of the related
run.

S3 Functional neighborhood, Run-wise classification,
Connectivity matrix from each run: MAD features
are extracted using functionally nearest neighbors. For
each run, connectivity matrix representing the pairwise
connectivities of voxels for all time instants in the
related run is formed. Different classifiers are trained
for each run using MAD features of the training data
of the related run.

IX. RESULTS

In our experiments, we empirically determine the interval
of mesh sizes [pmin, pmax] as [2, 100] in which the optimal



Fig. 2: Representation of optimal mesh sizes estimated for each voxel using spatial (A) and functional (B) neighborhood and
histograms of optimal mesh sizes computed using spatial (C) and functional (D) neighborhood [24].

mesh sizes of all of the voxels are assured to lie. Since
variable sizes of local meshes are formed around all voxels,
we can calculate the mean (µIC) of optimal mesh sizes can
be estimated as follows:

µIC ∼=
1

M

M∑
j=1

p̂ICj , (11)

where IC is either AIC, BIC or MDL, M represents the
number of voxels and p̂ICj is the optimal mesh size estimated
for a voxel at coordinates s̄j . Similarly, standard deviation of
optimal mesh sizes for all voxels can be calculated using:

σIC ∼=

√√√√ 1

M

M∑
j=1

(p̂ICj − µIC)2 . (12)

Table I shows the mean and standard deviations of optimal
mesh sizes calculated using AIC, BIC and MDL for the first
2 schemes.

TABLE I: Mean and standard deviations of optimal mesh
sizes estimated using AIC, BIC and MDL in two different
classification schemes S1 and S2

AIC BIC MDL

µAIC σAIC µBIC σBIC µMDL σMDL

S1, S2 38.16 18.84 32.71 15.46 32.96 15.67

Since in the last scheme (S3), the optimal mesh sizes are
estimated for each run and different results are obtained, we

can calculate the mean and standard deviations of optimal
mesh sizes for each run. Table II reflects resulting mean and
standard deviations run-wise.

TABLE II: Run-wise mean and standard deviations of optimal
mesh sizes estimated using AIC, BIC and MDL in the last
classification scheme S3

AIC BIC MDL

µAIC σAIC µBIC σBIC µMDL σMDL

run1 48.59 26.77 43.87 24.64 44.25 24.93

run2 40.68 23.74 36.96 21.24 37.19 21.47

run3 40.77 24.76 37.34 22.36 37.58 22.60

run4 45.32 21.52 41.03 19.02 41.32 19.29

run5 44.43 23.59 40.30 21.07 40.61 21.33

run6 41.17 20.39 37.53 17.88 37.76 18.10

run7 46.46 22.70 41.96 20.09 42.32 20.39

run8 50.32 21.80 45.61 19.47 45.93 19.70

Notice that, Table I reflects standard deviations of mesh
sizes estimated using spatial neighborhood whereas Table II
includes the ones estimated using functional neighborhood
for each run. From both tables it can be concluded that
standard deviation of optimal mesh sizes is smaller in spatial
neighborhood than in functional neighborhood.

Table III reflects classification performances of using three
different schemes using variable size of p (S1, S2 and S3)
and fixed size of p (F1, F2 and F3) in which optimal mesh
size is estimated for participant as in [14]. Note that F1

represents whole data classification where fixed size meshes
are formed using spatial neighborhood, F2 represents run-



TABLE III: Classification accuracies of using AIC, BIC and
MDL in three different classification schemes

AIC BIC MDL

S1 75% 74% 74%

F1 74% 71% 71%

S2 78% 75% 75%

F2 75% 71% 71%

S3 78% 78% 78%

F3 77% 77% 77%

wise classification where fixed size meshes are formed using
spatial neighborhood and F3 represents run-wise classification
where fixed size meshes are formed using functional neighbor-
hood. The classification performance of using classical MVPA
method on this data, in other words training the classifier using
the raw intensity values instead of MAD features performs
45% when k-NN is used as the classifier. Moreover, the average
performance of training 8 classifiers for each run using MVPA
method is 57%. As it can be seen from Table III, performance
results of using our approaches are much higher than that of
classical MVPA methods. Notice that, performing classifica-
tion with the features extracted using BIC and MDL result
in the same accuracies. Although using AIC performs slightly
better than those two criteria in spatial neighborhood (S1 and
S2), three criteria perform equally in functional neighborhood
(S3).

X. CONCLUSION

In this study, we propose an information theoretic approach
to model the connectivity among the distributed patterns
formed by the meshes of voxels in brain. First, we form a
local mesh around each voxel, in two different neighborhood
systems, by defining spatial and functional connectivity. Then,
we estimate the mesh arc weights, called Mesh Arc Descriptors
by a linear regression model, where the model order for each
mesh is estimated by optimizing a set of information criteria.
In this model, each voxel is connected to its p-spatially or
functionally nearest voxels, where the p values vary for each
voxel.

The main contribution of this study is to explore the
functional and spatial connectivity among the voxels, during
a cognitive process. In our study, the degree of connectivity
is represented in terms of the optimal mesh size of a voxel
which is estimated using various information theoretic criteria.
Another contribution of this study is the employment of the
MAD model to the classification of cognitive states. The
validity of the suggested connectivity model is shown to a
certain extent, by the improved classification performances of
the cognitive states. Although there are slight differences in the
performances, the proposed model has a higher classification
accuracy than that of the classical MVPA methods. It can be
concluded that using MAD with variable sizes has a better
representational power to discriminate the cognitive states.

Anatomical and cognitive correspondences of the suggested
model remain as an important future work.
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