
 1



Abstract—Parallelization of scientific problems is a challenging

task which has a wide application area both on distributed

programming, cloud computing and recently on GPGPU.

Spectral graph partitioning is a widely used technique in many

fields such as image processing, scientific computing, machine

learning etc. In this study we analyze spectral graph partitioning

subroutines on a GPGPU framework. Each step is analyzed with

differing techniques to lead a conclusion about usage of GPGPU

on overall spectral graph partitioning algorithms.

I. INTRODUCTION

nsupervised learning is one of the most important

approaches in machine learning where there is no labeled

data to train a classifier. There are many reasons and

advantages to employ unsupervised learning methods in

classification tasks. First, collecting and labeling a large set of

sample patterns can be costly. Second, it may be valuable to

gain some insight into the nature or structure of the data and

unsupervised learning helps this problem by not having any

assumption on the distribution of the data.

There are many approaches and techniques for clustering

the data in an unsupervised manner. Recently, spectral

clustering methods which exploit pair-wise similarities, shown

to be more effective in finding clusters than some traditional

algorithms such as k-means, fuzzy c-means etc. Spectral

clustering is a graph-theoretic clustering algorithm which finds

an optimal graph-cut [1] [2]. It is known that graph-cut is NP-

hard and spectral clustering solves graph-cut problem by

approximation, namely approximating the problem to spectral

graph partitioning.

Despite various advantages such as ability to cluster non-

Gaussian and arbitrary-shaped clusters, when the data

instances n is large, spectral clustering encounters quadratic

data bottleneck by computing and storing the pair-wise

similarity-matrix. Also spectral clustering requires remarkable

time and memory to find and store the first k eigenvectors of

the Laplacian matrix where k is the number of clusters. Hence

it is obvious that spectral clustering algorithm can perform

faster by employing parallel approaches.

All experiments and implementations of this study is conducted in the

Middle East Technical University – Informatics Institute Vision-Lab.

Orhan Fırat is with the Department of Computer Engineering, Middle East

Technical University (e-mail: orhan.firat @ ceng.metu.edu.tr).

Alptekin Temizel is with the Informatics Institute, Middle East Technical

University (e-mail: atemizel @ ii.metu.edu.tr).

During recent years, GPGPU has been developing rapidly.

Since NVIDIA released CUDA, it has appealed interests of

many researchers in all kinds of domains. Implementation of

the complete spectral clustering algorithm on GPGPU, though

is not a well studied topic so far because of its hard coupling

with eigen-value decomposition step. Except that the initial

and sequent steps are not only can be considered as a series of

sparse vector-vector multiplications but also, spectral

clustering algorithm mainly consists of matrix and vector

operations. Matrix problems usually imply huge possibility to

parallelization so we can come to a conclusion that spectral

clustering is well-suited to be parallelized, thus motivated our

study to analyze algorithmic subroutines of the clustering

algorithm on a GPGPU.

II. RECENT STUDIES

Parallelization of linear systems is well studied in the

domain of parallelization, but yet the parallelization of spectral

clustering is not a hot topic by consideration of GPGPU. Few

studies are found that employ GPGPU in spectral clustering

[3]. However, a very important part of the spectral clustering

algorithm is the eigenvalue problem of symmetric matrix, is

studied by many researchers. In [4] a parallel ARPACK

algorithm is employed to perform parallel eigenvalue

decomposition and distributed architecture is exploited, also

this algorithm gets fast when the matrix is sparse. This

algorithm employs parallelism by using distributed systems not

GPGPU but one of the examples of parallel solution of

spectral clustering.

Another popular approach to speed up spectral clustering is

by using a dense sub-matrix of similarity matrix. In another

work Chen et al. [5] propose a method by comparing both

sparsifying the similarity matrix and using the Nyström

approximation which avoids calculating the whole similarity

matrix. Their Parallel Spectral Clustering algorithm provides a

systematic solution for handling challenges from calculating

the similarity matrix to efficiently finding eigenvectors. Also

this study does not employ GPGPU in their parallelization

algorithm.

Parallel Spectral Graph Partitioning on CUDA

Orhan Fırat and Alptekin Temizel

U

 2

Figure 1. Flow-chart of the proposed spectral clustering algorithm on GPU. Each module is implemented on GPGPU represented as a separate step with blue

boxes. Steps executed on host tier illustrated as green boxes and excluded in analysis.

There exist no more than a few studies that employ GPGPU

in order to execute parallel spectral clustering algorithm. The

first study that employs GPU in the problem is [3] by Zheng et

al. In their spectral clustering framework parallelizing spectral

is conducted by first dividing the algorithm into three discrete

steps and then each sub-problem solved on GPU sequentially.

First affinity matrix construction from similarity matrix is

parallelized; second spectral computations are parallelized

namely, computing Laplacian matrix and its eigenvectors

corresponded to the first k largest eigenvalues of L by

parallelization of dense matrix-vector multiplication. Finally

the last step of the spectral clustering algorithm, k-means, is

parallelized. Proposed method by Zheng et al. achieved around

ten times speedup using CUDA and one of the pioneer studies

of the field.

Another GPGPU utilizing parallel spectral clustering

algorithm is conducted by Ito et al. [6]. In their study a naïve

boosting is performed by accelerating the computational

bottleneck of the first step of the spectral clustering which is

finding the k-nearest neighbors for all fragments and introduce

a minor speed-up.

Beyond these mentioned studies there is no significant study

that employs GPGPU on spectral clustering. In this study we

analyze spectral clustering subroutines on GPGPU, with

various utilizations in a stepwise manner. For each step, more

than one approach to the utilization of GPGPU is provided

also with a comparison of naïve host implementation. Stepwise

analysis may reveal some attack points to the problem of graph

partitioning on GPGPU and concentrate further studies to

these sub-problems.

The remainder of this paper is organized as follows. In

section III, spectral clustering algorithm on GPGPU is

explained and analyzed in a stepwise manner. In section IV,

we compared the performance of each utilized parallelization

routine. Finally our techniques are concluded and discussed in

section V.

III. SPECTRAL CLUSTERING ON GPGPU

In this section spectral clustering algorithm is explained

along with our approach of parallelization by GPGPU.

Spectral Clustering can be conducted as six consecutive steps.

Each step can be handled separately to achieve stepwise

parallelization and can be considered as a separate module as

shown in algorithm flow in figure 1.

A. Distance Matrix Generation (Step 1)

The first step is generating the neighbor graph as spectral-

clustering is a graph theoretic clustering algorithm. As the

dataset gets large and dimension of the data is high, finding the

neighborhoods in the high-dimensional space requires a long

time for the computation so the first step is vital to be

parallelized to boost performance of the overall algorithm.

To overcome complexity it this step is implemented as to

use brute force t- nearest neighbor search method accelerated

with GPGPU. This step assumes that the data has already been

read from the file and resides in the host memory also number

of nearest neighbors t is given as a user defined input. Given

n-by-d data matrix, where n is the number of data d is the

number of dimensions; by considering number of nearest

neighbors t, compute nxn distance S matrix by blocking the

data. Meaning that first select a block of data, fetching in row

order as to be fast, then compute Euclidean distance between

block and data, and find nearest neighbors. As each block will

be handled in parallel on GPU brute force t-nn will be

boosted.

This step is utilized parallelization with GPGPU by

considering the distance calculation problem as a matrix

multiplication. This approach eliminates the problem of the

feature dimension by calculating distances in one step in

parallel. Since the final goal of this step is to find distance

from every point to every other point regardless of the

dimensionality, we have to calculate our distance metric for

each point to every other.

 3

The Euclidean distance between two points p and q is given

by:

 .2qp =p-q
22

pq (1)

Where . corresponds to length of the vector, in order to

calculate distance between each points as in eq. 1, it is needed

to multiply feature matrix with its transpose to obtain a matrix

F where sub-diagonals consist of pq, super-diagonals consist

of qp and as the diagonal pp or qq. This matrix-matrix

multiplication is conducted by the use of CUBLAS library [7]

subroutine cublasSgemm. After this multiplication it is only

needed to process matrix F with a kernel in one pass to

calculate distance.

After obtaining the distance matrix the challenging part of

this step arises this is the selection of t-nearest neighbor of

each point in the distance matrix. Note that spectral clustering

can be performed without selecting t-nearest neighbor of a

point and dropping other points from the distance matrix but

then the problem of dense distance matrix problem should be

handled in further steps. This step makes the distance matrix

sparse and decreases the complexity of the overall algorithm.

On the GPGPU perspective two different schemas used to

utilize parallelization with GPGPU. Our goal is to find t-

closest element of each row to the element on the diagonal of

that row, and repeat for each row of the entire distance matrix.

First approach utilizes CUDA-Thrust library [8] to sort each

row of the distance matrix sequentially and further dropping

except first t-elements of each row. CUDA-Thrust library is

very fast and well-optimized for parallel operations on arrays

and array typed data-structures but the lack of the block

processing capability of matrices directly, lead us to use it

sequentially. Of course sorting whole matrix as an array and

processing the index intervals for rows seems as a solution, it

cannot be completed even the number of elements in the

distance matrix is 400x400 because of the memory bottlenecks

Thrust library uses. The performance of this approach is

illustrated in the table 1. It is expected to have a monotonically

increasing time complexity as the number of rows increase.

This drawback can be seen in the figure 2.

Second approach for parallelization of this step on GPGPU

is to use a sorting routine for each row of the distance matrix

on parallel. Insertion sort applied to each row of the distance

matrix on parallel. This kernel is not optimized with shared

memory or texture memory usage but noted as a further

improvement. The details of this subroutine can be found in

the study [9], our implementation uses the kernel mentioned in

the study with slight modifications. As expected utilizing a

naïve sorting algorithm in parallel improves the performance,

also the increase of time complexity is sub-linear as the

number of elements grown, this characteristic is shown in

graph 1.

We can come to a conclusion that it is suitable to use

CUDA-Thrust library when we are dealing with arrays or when

we can transform our problem in array domain. It is observed

by our experiments that using CUDA-Thrust library routines

are even faster for perfect-parallelism used (ex. CUDA-Thrust

performs faster than a direct kernel while filling elements of an

array). When the problem domain cannot be transformed, it is

more convenient to use fully parallelized naïve approaches

than very fast sequential routines.

B. Compute Affinity (Similarity) Matrix (Step 2)

Similarity conversion of distance matrix is one of the major

contributions of spectral clustering algorithm and many

diversifications exist in the literature questioning which

similarity metric should be used. In our implementation we

employed most common kernel which is radial basis kernel in

order to calculate similarities between data points.

This step is composed of computing the affinity matrix

given a set of points S = {s1 , . . . ,sn } in ℝ as converting

distance matrix to a sparse similarity matrix which can also be

called as affinity matrix. Forming the affinity matrix A ϵ ℝnxn

defined as follows:

j i 0

j i
2

ji /2s-s






ji

ji

A

eA


 (2)

This exponential is calculated for each point by considering

the entries on distance matrix S and well suited for

parallelization. The scaling parameter σ is some measure of

when two points are considered similar. The selection of σ is

commonly done manually but when the data contains multiple

scales, even using the optimal σ fails to provide good

clustering. Hence self-tuning version of the spectral clustering

algorithm is implemented in this study. In self-tuning version,

the selection of the local scale σi can be done by studying the

local statistics of the neighborhood of point si. The selection is

done by computing the distance between the point si with the

mean of its row. Note that by not having any assumptions on

the adjacency matrix all points are thought to be fully

connected (e.g. t-nearest neighbor selection step skipped) also

the scaling parameter σ
2
 can be replaced by σi and σj if self-

tuning spectral clustering as implemented in this study.

Self-tuning version needs to calculate mean of each row of

the sparsified distance matrix. Dealing the mean operation

sequentially may cause problems as stated in the previous step,

thus we approached to the problem as a matrix-vector

multiplication again. Calculation of mean needs to compute

non-zero elements and sum of these elements for each row

then dividing the result to further be used in calculation of

local scaling parameter σi. The sum of elements of each row of

a matrix can be computed by multiplying the matrix with a

vector consists of ones. This generates a vector having row

sums of matrix on its corresponding elements. Trivially by

 4

binarizing the input matrix, we obtain number of nonzero

elements in each row and calculation of mean becomes easy to

compute with two matrix-vector multiplications.

In this step a copy of distance matrix is binarized to

compute non-zero elements before-hand by a kernel and

matrix-vector multiplications are conducted by using

CUBLAS routine cublasSgemv. After calculating means of

each row it is straightforward to compute local scaling

parameter as explained in the previous sub-section. This

matrix-vector multiplications parallelizes the step perfectly and

improvements can be seen by considering tables 1-3.

C. Calculate Graph Laplacian (Step 3)

Computing diagonal matrix D does not need intensive

computing since matrix D consists of the sum of elements in a

row of the affinity matrix A on its diagonals. It represents

volume (degree) of a node in the overall adjacency graph to be

partitioned.

Define D to be a diagonal matrix with

 

n

1 jiii A =D
j

whose (i,i)- element is the sum of A`s i-th row.

This step is also very similar to calculating the mean of rows

of a matrix and handled in that manner. A matrix-vector

multiplication is conducted to compute row-sums by CUBLAS

routine cublasSgemv and it is used to build the diagonal matrix

D which will be multiplied on left and right of the similarity

matrix S by CUBLAS routine cublasSgemm. The performance

of this step brings minor improvements compared with the cpu

implementation as illustrated in tables 1-3.

D. Calculate Eigen values and Eigen vectors of Laplacian

Matrix (External Step)

Efficient and parallel Eigen value decomposition is one of

the major topics of scientific, parallel computing community

and many algorithms exist to find k-leading Eigen values and

Eigen vectors of a square-symmetric matrix. On the side of

GPGPU community there does not exist many

implementations of evd moreover the existing ones have

preconditioned states. The implementation in CUDA-ZONE

has the precondition of tri-banded-matrices and another study

[10] has some platform dependent requirements. It is out-of

scope of this study to analyze GPGPU on evd problems but

noted as a future study. Because of the mentioned points evd

routines are conducted on host-cpu side and results are feed to

GPGPU steps.

E. Calculate Graph Laplacian (Step 4)

By the assumption of having Eigen values and Eigen vectors

of the Laplacian matrix our next task is to select k-largest

Eigen values and their corresponding Eigen vectors with

assumption that host-cpu implementation provides all Eigen

values and Eigen vectors of the Laplacian matrix. Calculation

of k-largest Eigen values is conducted by using CUDA-Thrust

library and by using sorted Eigen values k-columned matrix X

is generated by a separate kernel. This step is a minor step and

can be considered as a preprocessing step of K-means step.

Generated matrix X is normalized by several steps on GPGPU.

Renormalization of matrix L is essential for further k-means

clustering step. Renormalize the rows of X to have unit length

yielding Y ϵ ℝnxk, such that . These steps

are conducted by first multiplying the matrix X with its

transpose to further extract its diagonal elements as to form

normalization vector. In this step for the matrix multiplication

CUBLAS routine cublasSgemm is used.

F. K-means Clustering of the rows of Y (Step 5)

K-means step is the final step of the spectral clustering step.

As the last step any clustering algorithm might be used but the

simplicity of k-means makes it the most common used

clustering in spectral-graph partitioning closer. In this step k-

means algorithm used with two different utilization schemas

one with utilization of shared memory reduction with texture

and the other one is block shared memory usage. Both have

their advantages and drawbacks, as the number of clusters is

low, texture memory utilizing k-means suffers from low shared

memory usage, and by the opposite, as the number of clusters

increase block shared memory utilized version initiates

consecutive loops to fill shared memory. As the former k-

means we used our own implementation and for the latter

version the implementation in [11] is used. The performance

analysis of K-means step is illustrated in tables 1-3 and also

analyzed in the next section.

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS

Experiments are conducted in three different configurations

namely, two different optimization techniques on GPGPU side

and a baseline implementation on host-cpu side. Details of the

steps are as follows:

 Configuration 1:

1) Step 1.1 thrust::sort_by_key

Step 1.2 memory operations (host to device)

Step 1.3 kernel executions

Step 1.4 memory operations (device to host)

Step 1.5 matrix symmetrization

Step 1.6 setting nearest neighbors on distance matrix

Step 1.7 thrust::sequence

2) Step 2.1 memory operations (host to device)

Step 2.2 kernel executions

Step 2.3 memory operations (device to host)

3) Step 3.1 kernel executions

Step 3.2 memory operations (host to device)

Step 3.3 memory operations (device to host)

4) Step 4.1 conversion of eigenvector matrix

Step 4.2 thrust::sort

Step 4.3 thrust::sequence

5) Step 5.1 normalize matrix rows

Step 5.2 cuda-kmeans using block shared mem. opt.

 5

The second configuration is as follows:

1) Step 1.1 cuda insertion sort

Step 1.2 matrix symmetrization

Step 1.3 setting nearest neighbors on distance matrix

Step 1.4 kernel executions

Step 1.5 memory operations (host to device)

Step 1.6 memory operations (device to host)

2) Step 2.1 kernel executions

Step 2.2 memory operations (host to device)

Step 2.3 memory operations (device to host)

3) Step 3.1 kernel executions

Step 3.2 memory operations (host to device)

Step 3.3 memory operations (device to host)

4) Step 4.1 conversion of eigenvector matrix

Step 4.2 thrust::sort

Step 4.3 thrust::sequence

5) Step 5.1 normalize matrix rows

Step 5.2 cuda-kmeans using texture opt.

The third configuration is a naïve host-cpu implementation

with no optimizations. The eigen decomposition step is

excluded as step 4. In the host-cpu side implementation

following study is used [12] proposed by Chen et.al.

Configuration 3 is given as only with major steps:

1) Step 1 generate t-nearest distance matrix

2) Step 2 generate similarity matrix

3) Step 3 generate graph laplacian

4) Step 5 host-k-means

The analysis of the GPGPU is considered first by comparison

of two different configurations on GPGPU, starting with the

first steps of the configuration 1 and 2. The comparison of the

two different sorting algorithms are illustrated in the figure 2

and it can be seen that, as the number of data samples increase,

insertion sort implemented on GPGPU by parallel meets the

thrust sort routine. As a linearly increasing function of thrust

sort can be used if there is a lack of optimized parallel sorting

algorithm of matrix rows.

Figure 2 . CUDA Thrust sort vs Insertion sort

Also it can be seen that host-cpu implementation is far from

comparison with GPGPU implementations as illustrated in

figure3.

Figure 3 . Total time of all three configurations in step1

The second and third steps of the spectral clustering

algorithms has no divergence between configurations hence

the overall stepwise comparison is given only as shown in

figure 4-5 below.

Figure 4 Total time of all three configurations in step2

Figure 5. Total time of all three configurations in step3

Figure 5 points out an interesting characteristic of step 3

namely, Graph Laplacian Calculation step which consists of

matrix-vector and matrix-matrix multiplications. In this step as

stated in the previous section all linear algebra routines are

executed by CUBLAS library routines but the host-cpu

implementation outperforms the GPGPU implementation of

 6

this step expresses that it is much more reasonable to use host-

cpu implementation in this particular step.

Step 4 is consists of Eigen vector concatenations to form Eigen

vector matrices to be used in K-means algorithm and does not

have any difference between two configurations. This step is

excluded from performance analysis of host-cpu

implementation; further details can be seen in table 1-3.

Step 5 executes k-means clustering on the matrix composed of

Eigen vectors. As stated in the previous section two different

k-means implementation employed in this step along with

host-cpu implementation. The corresponding sub step is

step5.2 of configuration 1 and 2 as also illustrated in figure 6

below.

Figure 6 Block shared memory vs Texture utilized k-means

Figure 6 illustrates that using shared memory blocks is faster

that using texture memory in some extent. It should be

considered that as the number of samples increase, block

shared memory version will suffer from memory transfers as it

will be constant for utilized texture memory. Another structure

to point out is that the texture version of k-means is much

more stable than the other, the overall k-means step can be

seen in figure 7 including the host-cpu implementation as well.

Figure 7 Total time of all three configurations in step5

The overall running time of all three configurations is

illustrated in figure 8 excluding evd step from all

configurations.

Figure 8 Total overall time of all three configurations

All the experiments are conducted on a Intel i7 CPU 870

@2.93Ghz with 4GB memory, and a Tesla C2070 NVIDIA

GPU installed with CUDA Runtime Version 4.0 and compute

capability 2.0. Number of threads and block sizes change

respectively only for sequential operations. Except Step 1.1-

“cuda insertion sort”, Step 5.1-“normalize matrix rows” and

some internal kernel calls in Step 5.2 “cuda-kmeans”; number

of threads per block fixed at 256 and block size varies with

respect to number of samples.

V. DISCUSSION & CONCLUSION

In this study we analyzed spectral graph partitioning sub-

routines with various approaches on GPGPU and analyzed

their performance with a further implementation on host-cpu.

The major assumption of spectral clustering is well suited for

GPGPU implementation is met as analyzed in the previous

section. That is without some minor steps all other steps

outperform naïve host-cpu implementation. The details of the

spectral clustering are analyzed step by step and the most

significant step found out to be the step 1 of each differing

configurations. Calculation of t-nearest neighbors in a large

dense distance matrix is the most challenging part of spectral

clustering which will be attacked in out further studies.

Another point is that implementing evd and analyzing its

affects to the overall algorithm must be handled on a GPGPU

perspective which is also noted as a future study.

CUBLAS library is extensively used in this study and found

very useful in matrix routines which are the main axis of

spectral clustering. CUBLAS library routines are used only in

dense matrices which should be implemented as a sparse

version and by the use of CUSPARSE library, the number of

data points should be increased to be able to use GPGPU

implementation extensively. Most of the matrices generated in

this study has sparse variant that can be utilized and boost

performance.

CUDA-Thrust library is also a very useful tool when our

problem consists of array-typed data structures. Developing

matrix-block operations by using CUDA-Thrust is expected to

boost performance also and will be further analyzed.

 7

APPENDIX

All of the performance results are illustrated below.

 8

ACKNOWLEDGMENT

The authors would like to thank the METU Informatics

Institute Game Technology Department staff and Virtual

Reality and Computer Vision Research Group for making it

possible to use CUDA enabled PCs of Vision-Lab.

REFERENCES

[1] Ng, A. Y., Jordan, M. I., and Weiss, Y., “On spectral clustering:

Analysis and an algorithm,” In Advances in Neural Information

Processing Systems (NIPS),(2001)

[2] Shi, J. And Malik, J., “Normalized cuts and image segmentation”,

IEEE Trans. Pattern Anal. Mach. Intell. (2000)

[3] Jing Zheng, Wenguang Chen, Yurong Chen, Yimin Zhang, Ying

Zhao, and Weimin Zheng. “Parallelization of spectral clustering

algorithm on multi-core processors and GPGPU”. In 2008 13th Asia-

Pacific Computer Systems Architecture Conference (ACSAC), page

8, Piscataway, NJ, USA, August 2008. Tsinghua Univ., Beijing,

China, IEEE.(2008)

[4] Miao G,Song Y,Zhang D,Bai H .”Parallel spectral clustering

algorithm for large-scale community”. In: The 17th workshop on

social web search and mining (SWSM)(2008)

[5] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward

Y. Chang, "Parallel Spectral Clustering in Distributed Systems,"

IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 568-586, March, (2011)

[6] Ito, J., Junichi Higo, Tomii, K.: "Classification of Protein Fragments

with a Spectral Graph Technique", The 20th International

Conference on Genome Informatics, pp.P034-1-P034-2(2009).

[7] http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/doc

s/CUBLAS_Library.pdf

[8] http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit

/docs/Thrust_Quick_Start_Guide.pdf

[9] V. Garcia and E. Debreuve and M. Barlaud. Fast k nearest neighbor

search using GPU. In Proceedings of the CVPR Workshop on

Computer Vision on GPU, Anchorage, Alaska, USA, June 2008

[10] Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee,

Mark Murphy and Kurt Keutzer, “Efficient, High Quality Image

Contour Detector”, International Conference on Computer Vision

(ICCV), September 2009

[11] http://users.eecs.northwestern.edu/~wkliao/Kmeans/index.html

[12] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and

Edward Y. Chang . “Parallel Spectral Clustering in Distributed

Systems” EEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), Vol. 33, No. 3, pp. 568-586, March 2011

