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Abstract—Parallelization of scientific problems is a challenging 

task which has a wide application area both on distributed 

programming, cloud computing and recently on GPGPU. 

Spectral graph partitioning is a widely used technique in many 

fields such as image processing, scientific computing, machine 

learning etc. In this study we analyze spectral graph partitioning 

subroutines on a GPGPU framework. Each step is analyzed with 

differing techniques to lead a conclusion about usage of GPGPU 

on overall spectral graph partitioning algorithms. 

  

 

I. INTRODUCTION 

nsupervised learning is one of the most important 

approaches in machine learning where there is no labeled 

data to train a classifier. There are many reasons and 

advantages to employ unsupervised learning methods in 

classification tasks. First, collecting and labeling a large set of 

sample patterns can be costly. Second, it may be valuable to 

gain some insight into the nature or structure of the data and 

unsupervised learning helps this problem by not having any 

assumption on the distribution of the data.  

There are many approaches and techniques for clustering 

the data in an unsupervised manner. Recently, spectral 

clustering methods which exploit pair-wise similarities, shown 

to be more effective in finding clusters than some traditional 

algorithms such as k-means, fuzzy c-means etc. Spectral 

clustering is a graph-theoretic clustering algorithm which finds 

an optimal graph-cut [1] [2]. It is known that graph-cut is NP-

hard and spectral clustering solves graph-cut problem by 

approximation, namely approximating the problem to spectral 

graph partitioning.  

Despite various advantages such as ability to cluster non-

Gaussian and arbitrary-shaped clusters, when the data 

instances n is large, spectral clustering encounters quadratic 

data bottleneck by computing and storing the pair-wise 

similarity-matrix. Also spectral clustering requires remarkable 

time and memory to find and store the first k eigenvectors of 

the Laplacian matrix where k is the number of clusters. Hence 

it is obvious that spectral clustering algorithm can perform 

faster by employing parallel approaches.  
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During recent years, GPGPU has been developing rapidly. 

Since NVIDIA released CUDA, it has appealed interests of 

many researchers in all kinds of domains. Implementation of 

the complete spectral clustering algorithm on GPGPU, though 

is not a well studied topic so far because of its hard coupling 

with eigen-value decomposition step. Except that the initial 

and sequent steps are not only can be considered as a series of 

sparse vector-vector multiplications but also, spectral 

clustering algorithm mainly consists of matrix and vector 

operations. Matrix problems usually imply huge possibility to 

parallelization so we can come to a conclusion that spectral 

clustering is well-suited to be parallelized, thus motivated our 

study to analyze algorithmic subroutines of the clustering 

algorithm on a GPGPU. 

 

II. RECENT STUDIES 

Parallelization of linear systems is well studied in the 

domain of parallelization, but yet the parallelization of spectral 

clustering is not a hot topic by consideration of GPGPU. Few 

studies are found that employ GPGPU in spectral clustering 

[3].  However, a very important part of the spectral clustering 

algorithm is the eigenvalue problem of symmetric matrix, is 

studied by many researchers. In [4] a parallel ARPACK 

algorithm is employed to perform parallel eigenvalue 

decomposition and distributed architecture is exploited, also 

this algorithm gets fast when the matrix is sparse. This 

algorithm employs parallelism by using distributed systems not 

GPGPU but one of the examples of parallel solution of 

spectral clustering.  

Another popular approach to speed up spectral clustering is 

by using a dense sub-matrix of similarity matrix. In another 

work Chen et al. [5] propose a method by comparing both 

sparsifying the similarity matrix and using the Nyström 

approximation which avoids calculating the whole similarity 

matrix. Their Parallel Spectral Clustering algorithm provides a 

systematic solution for handling challenges from calculating 

the similarity matrix to efficiently finding eigenvectors. Also 

this study does not employ GPGPU in their parallelization 

algorithm. 
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Figure 1. Flow-chart of the proposed spectral clustering algorithm on GPU. Each module is implemented on GPGPU represented as a separate step with blue 

boxes. Steps executed on host tier illustrated as green boxes and excluded in analysis. 

 

There exist no more than a few studies that employ GPGPU 

in order to execute parallel spectral clustering algorithm. The 

first study that employs GPU in the problem is [3] by Zheng et 

al. In their spectral clustering framework parallelizing spectral 

is conducted by first dividing the algorithm into three discrete 

steps and then each sub-problem solved on GPU sequentially. 

First affinity matrix construction from similarity matrix is 

parallelized; second spectral computations are parallelized 

namely, computing Laplacian matrix and its eigenvectors 

corresponded to the first k largest eigenvalues of L by 

parallelization of dense matrix-vector multiplication. Finally 

the last step of the spectral clustering algorithm, k-means, is 

parallelized. Proposed method by Zheng et al. achieved around 

ten times speedup using CUDA and one of the pioneer studies 

of the field.  

Another GPGPU utilizing parallel spectral clustering 

algorithm is conducted by Ito et al. [6]. In their study a naïve 

boosting is performed by accelerating the computational 

bottleneck of the first step of the spectral clustering which is 

finding the k-nearest neighbors for all fragments and introduce 

a minor speed-up. 

Beyond these mentioned studies there is no significant study 

that employs GPGPU on spectral clustering. In this study we 

analyze spectral clustering subroutines on GPGPU, with 

various utilizations in a stepwise manner. For each step, more 

than one approach to the utilization of GPGPU is provided 

also with a comparison of naïve host implementation. Stepwise 

analysis may reveal some attack points to the problem of graph 

partitioning on GPGPU and concentrate further studies to 

these sub-problems.  

The remainder of this paper is organized as follows. In 

section III, spectral clustering algorithm on GPGPU is 

explained and analyzed in a stepwise manner. In section IV, 

we compared the performance of each utilized parallelization 

routine. Finally our techniques are concluded and discussed in 

section V.  

 

III. SPECTRAL CLUSTERING ON GPGPU  

In this section spectral clustering algorithm is explained 

along with our approach of parallelization by GPGPU. 

Spectral Clustering can be conducted as six consecutive steps. 

Each step can be handled separately to achieve stepwise 

parallelization and can be considered as a separate module as 

shown in algorithm flow in figure 1.  

A. Distance Matrix Generation (Step 1) 

The first step is generating the neighbor graph as spectral-

clustering is a graph theoretic clustering algorithm. As the 

dataset gets large and dimension of the data is high, finding the 

neighborhoods in the high-dimensional space requires a long 

time for the computation so the first step is vital to be 

parallelized to boost performance of the overall algorithm. 

To overcome complexity it this step is implemented as to 

use brute force t- nearest neighbor search method accelerated 

with GPGPU. This step assumes that the data has already been 

read from the file and resides in the host memory also number 

of nearest neighbors t is given as a user defined input. Given 

n-by-d data matrix, where n is the number of data d is the 

number of dimensions; by considering number of nearest 

neighbors t, compute nxn distance S matrix by blocking the 

data. Meaning that first select a block of data, fetching in row 

order as to be fast, then compute Euclidean distance between 

block and data, and find nearest neighbors. As each block will 

be handled in parallel on GPU brute force t-nn will be 

boosted. 

This step is utilized parallelization with GPGPU by 

considering the distance calculation problem as a matrix 

multiplication. This approach eliminates the problem of the 

feature dimension by calculating distances in one step in 

parallel. Since the final goal of this step is to find distance 

from every point to every other point regardless of the 

dimensionality, we have to calculate our distance metric for 

each point to every other.   
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The Euclidean distance between two points p and q is given 

by:  

                          .2qp =p-q
22

pq  (1) 

  

 

Where  .  corresponds to length of the vector, in order to 

calculate distance between each points as in eq. 1, it is needed 

to multiply feature matrix with its transpose to obtain a matrix 

F where sub-diagonals consist of  pq, super-diagonals consist 

of qp and as the diagonal pp or qq. This matrix-matrix 

multiplication is conducted by the use of CUBLAS library [7] 

subroutine cublasSgemm. After this multiplication it is only 

needed to process matrix F with a kernel in one pass to 

calculate distance.  

After obtaining the distance matrix the challenging part of 

this step arises this is the selection of t-nearest neighbor of 

each point in the distance matrix. Note that spectral clustering 

can be performed without selecting t-nearest neighbor of a 

point and dropping other points from the distance matrix but 

then the problem of dense distance matrix problem should be 

handled in further steps. This step makes the distance matrix 

sparse and decreases the complexity of the overall algorithm.  

On the GPGPU perspective two different schemas used to 

utilize parallelization with GPGPU. Our goal is to find t-

closest element of each row to the element on the diagonal of 

that row, and repeat for each row of the entire distance matrix. 

First approach utilizes CUDA-Thrust library [8] to sort each 

row of the distance matrix sequentially and further dropping 

except first t-elements of each row. CUDA-Thrust library is 

very fast and well-optimized for parallel operations on arrays 

and array typed data-structures but the lack of the block 

processing capability of matrices directly, lead us to use it 

sequentially. Of course sorting whole matrix as an array and 

processing the index intervals for rows seems as a solution, it 

cannot be completed even the number of elements in the 

distance matrix is 400x400 because of the memory bottlenecks 

Thrust library uses. The performance of this approach is 

illustrated in the table 1. It is expected to have a monotonically 

increasing time complexity as the number of rows increase. 

This drawback can be seen in the figure 2. 

Second approach for parallelization of this step on GPGPU 

is to use a sorting routine for each row of the distance matrix 

on parallel. Insertion sort applied to each row of the distance 

matrix on parallel. This kernel is not optimized with shared 

memory or texture memory usage but noted as a further 

improvement. The details of this subroutine can be found in 

the study [9], our implementation uses the kernel mentioned in 

the study with slight modifications. As expected utilizing a 

naïve sorting algorithm in parallel improves the performance, 

also the increase of time complexity is sub-linear as the 

number of elements grown, this characteristic is shown in 

graph 1.  

 

 

We can come to a conclusion that it is suitable to use 

CUDA-Thrust library when we are dealing with arrays or when 

we can transform our problem in array domain. It is observed 

by our experiments that using CUDA-Thrust library routines 

are even faster for perfect-parallelism used (ex. CUDA-Thrust 

performs faster than a direct kernel while filling elements of an 

array). When the problem domain cannot be transformed, it is 

more convenient to use fully parallelized naïve approaches 

than very fast sequential routines.  

 

B. Compute Affinity (Similarity) Matrix (Step 2) 

Similarity conversion of distance matrix is one of the major 

contributions of spectral clustering algorithm and many 

diversifications exist in the literature questioning which 

similarity metric should be used. In our implementation we 

employed most common kernel which is radial basis kernel in 

order to calculate similarities between data points. 

This step is composed of computing the affinity matrix 

given a set of points S = {s1 , . . . ,sn } in ℝ as converting 

distance matrix to a sparse similarity matrix which can also be 

called as affinity matrix. Forming the affinity matrix A ϵ ℝnxn  

defined as follows:  

 

                         

j  i                       0

j  i         
2

ji /2s-s






ji

ji

A

eA


 (2) 

 

This exponential is calculated for each point by considering 

the entries on distance matrix S and well suited for 

parallelization. The scaling parameter σ is some measure of 

when two points are considered similar. The selection of σ is 

commonly done manually but when the data contains multiple 

scales, even using the optimal σ fails to provide good 

clustering. Hence self-tuning version of the spectral clustering 

algorithm is implemented in this study. In self-tuning version, 

the selection of the local scale σi can be done by studying the 

local statistics of the neighborhood of point si. The selection is 

done by computing the distance between the point si with the 

mean of its row. Note that by not having any assumptions on 

the adjacency matrix all points are thought to be fully 

connected (e.g. t-nearest neighbor selection step skipped) also 

the scaling parameter σ
2
 can be replaced by σi and σj if self-

tuning spectral clustering as implemented in this study.  

Self-tuning version needs to calculate mean of each row of 

the sparsified distance matrix. Dealing the mean operation 

sequentially may cause problems as stated in the previous step, 

thus we approached to the problem as a matrix-vector 

multiplication again. Calculation of mean needs to compute 

non-zero elements and sum of these elements for each row 

then dividing the result to further be used in calculation of 

local scaling parameter σi. The sum of elements of each row of 

a matrix can be computed by multiplying the matrix with a 

vector consists of ones. This generates a vector having row 

sums of matrix on its corresponding elements. Trivially by 
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binarizing the input matrix, we obtain number of nonzero 

elements in each row and calculation of mean becomes easy to 

compute with two matrix-vector multiplications.  

In this step a copy of distance matrix is binarized to 

compute non-zero elements before-hand by a kernel and 

matrix-vector multiplications are conducted by using 

CUBLAS routine cublasSgemv. After calculating means of 

each row it is straightforward to compute local scaling 

parameter as explained in the previous sub-section. This 

matrix-vector multiplications parallelizes the step perfectly and 

improvements can be seen by considering tables 1-3. 

 

C. Calculate Graph Laplacian (Step 3) 

Computing diagonal matrix D does not need intensive 

computing since matrix D consists of the sum of elements in a 

row of the affinity matrix A on its diagonals. It represents 

volume (degree) of a node in the overall adjacency graph to be 

partitioned.  

Define D to be a diagonal matrix with 

 

n

1 jiii A =D
j

whose (i,i)- element is the sum of A`s i-th row. 

This step is also very similar to calculating the mean of rows 

of a matrix and handled in that manner. A matrix-vector 

multiplication is conducted to compute row-sums by CUBLAS 

routine cublasSgemv and it is used to build the diagonal matrix 

D which will be multiplied on left and right of the similarity 

matrix S by CUBLAS routine cublasSgemm. The performance 

of this step brings minor improvements compared with the cpu 

implementation as illustrated in tables 1-3.  

 

D. Calculate Eigen values and Eigen vectors of Laplacian 

Matrix (External Step) 

Efficient and parallel Eigen value decomposition is one of 

the major topics of scientific, parallel computing community 

and many algorithms exist to find k-leading Eigen values and 

Eigen vectors of a square-symmetric matrix. On the side of 

GPGPU community there does not exist many 

implementations of evd moreover the existing ones have 

preconditioned states. The implementation in CUDA-ZONE 

has the precondition of tri-banded-matrices and another study 

[10] has some platform dependent requirements. It is out-of 

scope of this study to analyze GPGPU on evd problems but 

noted as a future study. Because of the mentioned points evd 

routines are conducted on host-cpu side and results are feed to 

GPGPU steps. 

 

E. Calculate Graph Laplacian (Step 4) 

By the assumption of having Eigen values and Eigen vectors 

of the Laplacian matrix our next task is to select k-largest 

Eigen values and their corresponding Eigen vectors with 

assumption that host-cpu implementation provides all Eigen 

values and Eigen vectors of the Laplacian matrix. Calculation 

of k-largest Eigen values is conducted by using CUDA-Thrust 

library and by using sorted Eigen values k-columned matrix X 

is generated by a separate kernel. This step is a minor step and 

can be considered as a preprocessing step of K-means step. 

Generated matrix X is normalized by several steps on GPGPU. 

Renormalization of matrix L is essential for further k-means 

clustering step.  Renormalize the rows of X  to have unit length 

yielding Y  ϵ ℝnxk, such that . These steps 

are conducted by first multiplying the matrix X with its 

transpose to further extract its diagonal elements as to form 

normalization vector. In this step for the matrix multiplication 

CUBLAS routine cublasSgemm is used. 

 

F. K-means Clustering of the rows of Y (Step 5) 

K-means step is the final step of the spectral clustering step. 

As the last step any clustering algorithm might be used but the 

simplicity of k-means makes it the most common used 

clustering in spectral-graph partitioning closer. In this step k-

means algorithm used with two different utilization schemas 

one with utilization of shared memory reduction with texture 

and the other one is block shared memory usage. Both have 

their advantages and drawbacks, as the number of clusters is 

low, texture memory utilizing k-means suffers from low shared 

memory usage, and by the opposite, as the number of clusters 

increase block shared memory utilized version initiates 

consecutive loops to fill shared memory. As the former k-

means we used our own implementation and for the latter 

version the implementation in [11] is used. The performance 

analysis of K-means step is illustrated in tables 1-3 and also 

analyzed in the next section.  

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS 

Experiments are conducted in three different configurations 

namely, two different optimization techniques on GPGPU side 

and a baseline implementation on host-cpu side. Details of the 

steps are as follows: 

 

 Configuration 1:  

1) Step 1.1 thrust::sort_by_key 

Step 1.2 memory operations (host to device) 

Step 1.3 kernel executions 

Step 1.4 memory operations (device to host) 

Step 1.5 matrix symmetrization 

Step 1.6 setting nearest neighbors on distance matrix 

Step 1.7 thrust::sequence 

2) Step 2.1 memory operations (host to device) 

Step 2.2 kernel executions 

Step 2.3 memory operations (device to host) 

3) Step 3.1 kernel executions 

Step 3.2 memory operations (host to device) 

Step 3.3 memory operations (device to host) 

4) Step 4.1 conversion of eigenvector matrix 

Step 4.2 thrust::sort 

Step 4.3 thrust::sequence 

5) Step 5.1 normalize matrix rows 

Step 5.2 cuda-kmeans using block shared mem. opt. 
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The second configuration is as follows: 

1) Step 1.1 cuda insertion sort 

Step 1.2 matrix symmetrization  

Step 1.3 setting nearest neighbors on distance matrix  

Step 1.4 kernel executions  

Step 1.5 memory operations (host to device) 

Step 1.6 memory operations (device to host) 

2) Step 2.1 kernel executions  

Step 2.2 memory operations (host to device) 

Step 2.3 memory operations (device to host) 

3) Step 3.1 kernel executions  

Step 3.2 memory operations (host to device) 

Step 3.3 memory operations (device to host) 

4) Step 4.1 conversion of eigenvector matrix 

Step 4.2 thrust::sort 

Step 4.3 thrust::sequence 

5) Step 5.1 normalize matrix rows 

Step 5.2 cuda-kmeans using texture opt. 

 

The third configuration is a naïve host-cpu implementation 

with no optimizations. The eigen decomposition step is 

excluded as step 4. In the host-cpu side implementation 

following study is used [12] proposed by Chen et.al. 

Configuration 3 is given as only with major steps: 

1) Step 1 generate t-nearest distance matrix 

2) Step 2 generate similarity matrix 

3) Step 3 generate graph laplacian 

4) Step 5 host-k-means 

 

The analysis of the GPGPU is considered first by comparison 

of two different configurations on GPGPU, starting with the 

first steps of the configuration 1 and 2. The comparison of the 

two different sorting algorithms are illustrated in the figure 2 

and it can be seen that, as the number of data samples increase, 

insertion sort implemented on GPGPU by parallel meets the 

thrust sort routine. As a linearly increasing function of thrust 

sort can be used if there is a lack of optimized parallel sorting 

algorithm of matrix rows. 

 

 
Figure 2 . CUDA Thrust sort vs Insertion sort  

 

Also it can be seen that host-cpu implementation is far from 

comparison with GPGPU implementations as illustrated in 

figure3. 

 

 

 
Figure 3 . Total time of all three configurations in step1 

 

The second and third steps of the spectral clustering 

algorithms has no divergence between configurations hence 

the overall stepwise comparison is given only as shown in 

figure 4-5 below. 

 

 
Figure 4 Total time of all three configurations in step2 

 

 
Figure 5. Total time of all three configurations in step3 

 

Figure 5 points out an interesting characteristic of step 3 

namely, Graph Laplacian Calculation step which consists of 

matrix-vector and matrix-matrix multiplications. In this step as 

stated in the previous section all linear algebra routines are 

executed by CUBLAS library routines but the host-cpu 

implementation outperforms the GPGPU implementation of 
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this step expresses that it is much more reasonable to use host-

cpu implementation in this particular step.  

 

Step 4 is consists of Eigen vector concatenations to form Eigen 

vector matrices to be used in K-means algorithm and does not 

have any difference between two configurations. This step is 

excluded from performance analysis of host-cpu 

implementation; further details can be seen in table 1-3. 

 

Step 5 executes k-means clustering on the matrix composed of 

Eigen vectors. As stated in the previous section two different 

k-means implementation employed in this step along with 

host-cpu implementation. The corresponding sub step is 

step5.2 of configuration 1 and 2 as also illustrated in figure 6 

below. 

 

 
Figure 6 Block shared memory vs Texture utilized k-means 

 

Figure 6 illustrates that using shared memory blocks is faster 

that using texture memory in some extent. It should be 

considered that as the number of samples increase, block 

shared memory version will suffer from memory transfers as it 

will be constant for utilized texture memory. Another structure 

to point out is that the texture version of k-means is much 

more stable than the other, the overall k-means step can be 

seen in figure 7 including the host-cpu implementation as well. 

 

 
Figure 7 Total time of all three configurations in step5 

 

The overall running time of all three configurations is 

illustrated in figure 8 excluding evd step from all 

configurations. 

 
Figure 8 Total overall time of all three configurations 

 

All the experiments are conducted on a Intel i7 CPU 870 

@2.93Ghz with 4GB memory, and a Tesla C2070 NVIDIA 

GPU installed with CUDA Runtime Version 4.0 and compute 

capability 2.0. Number of threads and block sizes change 

respectively only for sequential operations. Except Step 1.1- 

“cuda insertion sort”, Step 5.1-“normalize matrix rows” and 

some internal kernel calls in Step 5.2 “cuda-kmeans”; number 

of threads per block fixed at 256 and block size varies with 

respect to number of samples. 

 

V. DISCUSSION & CONCLUSION 

In this study we analyzed spectral graph partitioning sub-

routines with various approaches on GPGPU and analyzed 

their performance with a further implementation on host-cpu. 

The major assumption of spectral clustering is well suited for 

GPGPU implementation is met as analyzed in the previous 

section. That is without some minor steps all other steps 

outperform naïve host-cpu implementation. The details of the 

spectral clustering are analyzed step by step and the most 

significant step found out to be the step 1 of each differing 

configurations. Calculation of t-nearest neighbors in a large 

dense distance matrix is the most challenging part of spectral 

clustering which will be attacked in out further studies. 

Another point is that implementing evd and analyzing its 

affects to the overall algorithm must be handled on a GPGPU 

perspective which is also noted as a future study.  

CUBLAS library is extensively used in this study and found 

very useful in matrix routines which are the main axis of 

spectral clustering. CUBLAS library routines are used only in 

dense matrices which should be implemented as a sparse 

version and by the use of CUSPARSE library, the number of 

data points should be increased to be able to use GPGPU 

implementation extensively. Most of the matrices generated in 

this study has sparse variant that can be utilized and boost 

performance.  

CUDA-Thrust library is also a very useful tool when our 

problem consists of array-typed data structures. Developing 

matrix-block operations by using CUDA-Thrust is expected to 

boost performance also and will be further analyzed.  
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APPENDIX 

All of the performance results are illustrated below. 
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