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ABSTRACT
Learning low dimensional embedding spaces (manifolds) for
efficient feature representation is crucial for complex and
high dimensional input spaces. Functional magnetic reso-
nance imaging (fMRI) produces high dimensional input data
and with a less then ideal number of labeled samples for
a classification task. In this study, we explore deep learn-
ing methods for fMRI classification tasks in order to reduce
dimensions of feature space, along with improving classifi-
cation performance for brain decoding. We employ sparse
autoencoders for unsupervised feature learning, leveraging
unlabeled fMRI data to learn efficient, non-linear represen-
tations as the building blocks of a deep learning architecture
by stacking them. Proposed method is tested on a memory
encoding/retrieval experiment with ten classes. The results
support the efficiency compared to the baseline multi-voxel
pattern analysis techniques.

Index Terms— Deep Learning, Stacked Autoencoders,
fMRI, MVPA, brain state decoding

1. INTRODUCTION

Multi-voxel Pattern Analysis (MVPA) methods have become
increasingly popular in the analysis of functional Magnetic
Resonance Imaging (fMRI) data [1–4]. These methods are
employed in many problems, such as hypothesis valida-
tion [5], diagnosing disorders [4, 6] and recently brain state
decoding, also known as mind reading [1, 7]. The major
difficulty of using the fMRI data for pattern analysis is the
deficiency of the labeled samples in comparison to the high
dimensional feature representations. The classical pattern
recognition techniques are prone to several problems, such
as over-fitting, insignificance and curse-of-dimensionality.
In order to overcome the limitations of the classical MVPA
methods, the fMRI data is restricted a priori to a subset of
voxels which obviously results in losing several relational
information-channels (relations between voxels) [5–8]. The
trade-off between the restriction on number of voxels (region
of interest selection) and the need to employ voxels from
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whole brain (even redundant and un-informative ones) may
result in misleading analyses about the nature of the brain
states. The shortcomings of the available techniques necessi-
tates us to study approaches that are robust to the sparsity and
information integrity for feature representations.

It is well-established that deep learning architectures re-
semble some similarities with the human brain in terms of
scalability. Recent studies on unsupervised feature learn-
ing and deep learning propose an alternative to the classical
MVPA techniques by making use of the unlabeled data and
learning a feature hierarchy automatically [9–11]. Unsu-
pervised feature learning leverages unlabeled data to learn
basic patterns (regularities) which can be used in forthcoming
supervised tasks [12, 13]. On the other hand, deep learn-
ing constructs several layers of features where higher levels
capture more abstract forms of variations in data [14]. By
combining the deep learning architecture with the unsuper-
vised feature learning backbone, it is possible to discover a
low-dimensional feature space. This manifold space can then
be used to map high dimensional input data [15, 16]. Deep
learning is a rapidly growing area of AI and recently emerging
for computational medical imaging [17–20]. A stacked au-
toencoder (SAE) is used in [19], for organ detection using 4D
data by making use of spatial and temporal filters which are
learned automatically. A similar SAE is used in [18] to learn
a joint feature representation using for MRI, PET and CSF
for Alzheimer’s disease detection. In [20], a low-dimensional
manifold is learned using a stacked convolutional restricted
Boltzmann machine for Alzheiher’s detection using struc-
tural MRI. Image segmentation for MRI is subjected in [17]
by a stacked convolutional independent subspace analysis
network.

In this study, we propose to model the 4-dimensional
spatio-temporal fMRI data by the features extracted from the
unsupervised feature learning method. Then, we explore the
deep learning openings for better discrimination of cognitive
processes. We conduct a memory encoding and retrieval
experiment with ten semantic categories. Then, we use the
unlabeled fMRI data for unsupervised learning represen-
tations along with a stacked sparse-autoencoder to reduce



dimensionality for brain state classification.

2. AUTOENCODERS FOR UNSUPERVISED
FEATURE LEARNING

An autoencoder is a type of neural network which recon-
structs its input by setting the target values to be equal to the
inputs, x ≈ x̄. An autoencoder consists of two consecutive
functions. The first one is an encoder function fθ1(x) applied
on input data x with parameters θ1 = {W (1), b(1)} (transi-
tion and bias respectively). This function maps the input data
to a hidden representation h. The second function is a de-
coder function gθ2(fθ1(x)) which maps the hidden represen-
tations to a reconstruction x̃ of input, parametrized by θ2 =
{W (2), b(2)}. Note that, encoding and decoding functions are
mappings, such that, f : RN → RK and g : RK → RN ,
where N is the input dimensionality and K is the number of
neurons in the hidden layer. By enforcing some constraints,
(a sparsity [21] or contracting term [22] regarding to hidden
layer activations or distorting input respectively [23]) the au-
toencoder learns a compact and non-linear representation of
the input. Therefore, it keeps away from learning an identity
function.

In this study, we focus on sparse autoencoders having sin-
gle hidden layers in the encoding/decoding functions by en-
forcing a sparsity (activation around zero) to hidden unit neu-
rons via the cost function. After learning model parameters
Θ = {θ1, θ2}, the sparse autoencoder learns the non-linear
feature mapping function f which can be used in further clas-
sification tasks or feeding the input layer of another autoen-
coder.

A sparse autoencoder havingK hidden neurons, is trained
in order to minimize squared reconstruction error using back-
propagation by minimizing the following cost function,

Jsparse(Θ) = JNN (Θ) + βJρ̂ (1)

where JNN (Θ) being regularized neural network cost and Jρ̂
regarding to sparsity term. Hyper-parameter β controls the
importance of sparsity in the model. In the general, L2 reg-
ularized neural network (having 1 hidden layer) cost with m
examples is as follows,

JNN (Θ) =
1

2m
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where first term corresponds to the squared reconstruction er-
ror and the second term corresponds to the weight decay term
that penalizes large values of transition parameters for all en-
tries u, v. The activation of the each layer l is computed as
a(l) = σ(W (l−1)a(l−1) + b(l−1)) where λ is the regulariza-
tion parameter, σ is the sigmoid function and ‖.‖ indicates L2
norm and a(0) = x. Note that, fθ1(x) = a(1) in our model.
Further, let

ρ̂j =
1

m

∑
i

a
(2)
j (x(i)), (3)

be the average activation of hidden unit j over the dataset and
enforce the constraint ρ̂j = ρ where ρ is the sparsity parame-
ter (chosen to be close to zero). In order to measure the spar-
sity cost, Kullback-Leibler divergence between average acti-
vation of a unit ρ̂ and sparsity parameters ρ is employed. Fi-
nally, sparsity term of the overall cost function in (1) is given
as follows:

Jρ̂ =

K∑
j

KL(ρ‖ρ̂j) =

K∑
j

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(4)
Optimization of the model parameters can be achieved

by gradient descent. Since the objective gradient can be
computed exactly, it is plausible to use advanced optimiza-
tion methods. For this reason, we employ a quasi-newton
L-BFGS method. Note that, for the inputs that are not
in [0 − 1] range, output layer activations can be set di-
rectly as the weighted sum of its pre-activations without
passing through a point-wise sigmoid function, meaning
a(2) = gθ2(fθ1(x)) = W (1)a(1) + b(1).

3. STACKED AUTOENCODERS FOR DEEP
LEARNING REPRESENTATIONS

Given the unlabeled fMRI data, the autoencoder learns non-
linear intermediate representations (codes) to reconstruct the
data. In order to achieve a better reconstruction, represen-
tations must specifically capture the necessary variations to
distinguish examples in the input data. This constitutes the
directions of variations on the manifold where the probabil-
ity mass (the data generating distribution) concentrates [14].
It has also been shown that highly complex functions can be
represented with fewer parameters through the composition of
many non-linearities, which is a deep architecture as opposed
to the shallow ones [9, 15]. Hence by stacking autoencoders
(or any non-linear feature mappings), more abstract and com-
plex representations are achieved which also makes the data
generating distribution more uniform manifolds. The ratio-
nale of unfolding the manifold in representation space is that,
it is the most efficient way to represent the information where
linear perturbations in higher levels will still move near mani-
fold [16,24]. This process also helps to reduce dimensionality
of the input because we will need less and less manifold coor-
dinates to span an unfolded manifold as deeper as our model.

In this study we employed stacked sparse autoencoders to
learn a low-dimensional non-linear feature representations for
fMRI pattern classification. The sparsity term and number of
neurons in each layer of stacked autoencoder, are selected to
lower the representation dimension without hurting the recon-
struction error drastically. In order to obtain a stacked autoen-
coder, we employed greedy layer-wise pre-training [12, 25]
where we trained one layer at a time. That is, we first train
the first level autoencoder by using training data as input, and
then train the second level autoencoder with the outputs from
the first layer autoencoder encoding function as input and so



on. Note that, pre-training is performed in an unsupervised
fashion. We can formalize a stacked autoencoder as follows,

hL = f
(L)
θ1

(· · · f (2)θ1
(f

(1)
θ1

(x))), (5)

where we discard decoder functions g(·) as we finish training
the autoencoder, starting from the very first layer using in-
put data. Final representation (manifold coordinates) can be
obtained by the encoder function of the last layer L with the
hidden representations hL.

4. CLASSIFICATION OF BRAIN STATES USING
DEEP REPRESENTATIONS

To improve classification performance, deep learning archi-
tectures can be fine-tuned for discrimination which is called
supervised fine-tuning [25]. Final fine-tuning phase makes
all the parameters {θ(i)1 }Li=1 tuned for the supervised task at
hand, by modifying representations slightly to get the cate-
gory boundaries right. This can be achieved easily by unfold-
ing the stacked autoencoder into a multi-layer neural network
(initializing the weights) and adding a fully connected soft-
max layer on top where the number of neurons in the softmax
layer is equal to the number of classes to be discriminated.
It is then straight forward to optimize the network by back-
propagation with gradient descent using the error derivatives
of the top-most softmax layer. As expected, fine-tuning phase
necessitates labelled data, but due to the pre-training phase,
it does not need to discover new features, which reduces the
need for a high number of labelled samples for the discrim-
inative phase. It has also been shown that this type of back-
propagation works well even if most of the data is unlabelled
[13], which might often be the case for fMRI pattern classifi-
cation tasks.

5. EXPERIMENTS ON FMRI DATA
REPRESENTATION AND CLASSIFICATION

fMRI data is composed of 3-dimensional brain volumes
across time {ti}ni=1, where each 3D volume is formed by
stacking several 2D scans (slices). Each pixel in these 2D
images are actually represents the intensity of a small volume
of brain tissue (voxel) at a time instant ti. A typical fMRI
experiment consists of several runs, where in each run the
subject is exposed to some task specific stimuli {cj}Sj=1 at
the predefined time instants, where S is the total number of
semantic classes in the experiment and n is the total length of
the experiment across runs (see Figure 1). The problem arises
for classification tasks here because within a large amount of
samples across time, only few have assigned class labels. The
rest of the samples that are not having a class label ti/cj are
simply discarded. The unsupervised feature learning motiva-
tion in this study is rooted with this fact; namely, by making
use of the discarded data, which might be as high as ten times
more, compared to labelled samples in a typical experiment.

5.1. Data and Preprocessing
In the current study, fMRI recording was conducted during
a recognition memory task. Each participant is shown a list

Fig. 1. Example of a typical fMRI experiment for brain state
decoding. 4D fMRI data consists of several volumes across
time, some of which have assigned to a class labels(indicated
by vertical lines in time axis)

of words belonging to a specified category in the encoding
phase (e.g. fruits or tools). Following a delay period where
the participant solves mathematical problems, a test probe is
presented and the participant executes a yes/no response indi-
cating whether the word belongs to the current study list (e.g.,
see [5]). For the classification task we focused on lateral tem-
poral cortex region having 8142 voxels. fMRI data consists
of 2400 time points with 240 class labels for the encoding
phase and 240 class labels for the retrieval phase (for each of
ten classes, 24 samples are obtained for both encoding and
retrieval).

5.2. Classification of Brain States
The classification task we try to accomplish is to predict class
labels of the samples in the retrieval phase by using samples in
the encoding phase. Measurements recorded in the encoding
phase are used as labelled training samples and measurements
in the retrieval phase are used as test samples. The critical
component in this supervised classification task is the way we
incorporated the unlabelled samples. All the unlabelled sam-
ples along with labelled training samples of encoding phase
are used in unsupervised feature learning with a stacked au-
toencoder. After learning a high level representation, labelled
data is employed to either fine tune the model or directly to
classify using the last layer activation of stacked autoencoder
as described above.

5.3. Testing Procedures
In order to assess the applicability of the deep learning meth-
ods on the fMRI data, we initially used a small subset of mea-
surements (100 voxels) and trained a stacked autoencoder up
to two levels. Next, we employed a larger set of voxels (1024)
stacked up to three levels. In both settings, we compared the
results with the state of the art MVPA methods. The first
method used for comparison, is the classical approach where
voxel intensity values are directly fed into classifiers (indi-
cated as MVPA). The second method is a local-linear model,
where each voxel is represented in the feature space with the
linear regression weights estimated using its surrounding vox-
els (indicated as MAD) [26]. For the unsupervised feature



Fig. 2. A subset of first layer filters learned using sparse au-
toencoder for 100 voxels in a 2D slice. Each square box above
corresponds to a filter that is sensitive for a specific activation
pattern of voxels. A general wedge shape activation pattern
with varying intensity levels is observed along diagonals.)

learning phase, we employed all measurements (2160), ex-
cluding the retrieval samples to be used for the test phase. For
sparse auto-encoders, untied weights (θ1 6= θT2 ) were used
in all layers as it gives better performance than tied weights
in our experiments. In order to reduce dimensions in the
top-most layer representations, we gradually decreased the
number of neurons in each layer and reduce the β parameter
that controls the importance of sparsity. For the fine-tuning
phase, we attached a softmax layer with 10 units on top. For
comparison with baseline MVPA methods, penultimate layer
activations were fed to a k-Nearest Neighbor (knn) classi-
fier. Model parameters and hyper-parameters were empiri-
cally selected on a held-out cross validation set. For imple-
mentations of the methods mentioned above, we used libORF
(http://www.ceng.metu.edu.tr/∼e1697481/libORF.html)

6. RESULTS
In order to qualitatively assess the validity of the unsuper-
vised feature learning phase, we visualized the first layer fil-
ters learned for stacked autoencoders with 100 voxel exper-
iment. The learned filters are illustrated in Figure 2. It is
expected to observe reasonable activation patterns for these
100 voxels since they reside in a spatially connected space
(nearest voxels in a 2D-slice). Plausible patterns should re-
semble an fMRI alike intensity map as illustrated in Figure 2.
It can be deduced that, the selected 100 voxels have various
activation patterns that exhibit a wedge like pattern with vari-
ous intensity levels along diagonal of learned filters. Learned
filters are also very similar to actual fMRI 2D-slices when
we zoom in and compare with the slice in Figure 1. As the
aim of unsupervised feature learning is to capture a codeword
for fMRI data in a lower dimensional space (manifold), we
can conclude that it is promising to use the activation patterns
learned in this phase to construct a feature space for the forth-
coming classification task.

Pattern analysis results were evaluated by considering fi-
nal feature space dimensions in classifiers by comparing clas-
sification accuracy, shown in Table 1. Proposed non-linear
feature mapping (NLFM) method using stacked sparse au-
toencoders is tested with varying depth and fine-tuning op-
tions (indicated with a * in Table 1). A shallow feature learn-
ing with a single layer autoencoder (NLFM1) is tested ini-

Method
Employed

100 voxels 1024 voxels ClassifierAcc % Dim Acc % Dim
MVPA 44.83 100 58.62 1024 knn
MAD [26] 48.28 400 65.52 19456 knn
NLFM1 44.83 50 - - softmax
NLFM1* 48.28 50 58.62 500 softmax
NLFM1* 51.72 50 65.52 500 knn
NLFM2 58.62 49 68.97 450 knn
NLFM3 - - 72.41 150 knn

Table 1. Classification performances of Non-Linear Feature
Mapping (NLFM) with classical methods for fMRI ML tasks
(MVPA) and a local-linear feature extraction method (MAD).
Feature dimensions are indicated in Dim columns.

tially which gives almost similar performance with the base-
line methods (MVPA,MAD), by reducing the dimension by
half, which is expected as the non-linear mapping compared
to the lieear ones. We further reduced the dimension by stack-
ing more layers up to 150 from 1024 for the second experi-
ment where we consider 1024 voxels. Classification perfor-
mances gradually increase as we stack up additional layers
which can be seen in Table 1 up to 59% and 72% respectively
for 100 and 1024 voxels experiments. We also observed a
notable performance increase with fine-tuning in our exper-
iments. Compared to the baseline methods we observed a
drastic reduction in the feature dimensions (150 compared to
1024 of MVPA and 19456 for MAD), with improving perfor-
mance. Increased dimensions in the feature space is prone to
over-fitting in fMRI classification tasks when we consider the
scantiness of labelled data. As we increase the feature dimen-
sions the gain in the generalization performance gets stuck up
to a level due to over-fitting where curse-of-dimensionality
arises with linear models. The results show that multi-layer
non-linear feature mapping methods are promising for high
dimensional input spaces with a low number of labelled sam-
ples by leveraging unlabelled data.

7. CONCLUSION
In this investigation, we modeled the neural activity using
non-linear feature mapping strategies. We explored the the
multiple layers of autoencoders in a deep learning framework.
Stacked sparse autoencoders are used in order to learn a non-
linear feature hierarchy with using the unlabeled fMRI data.
The manifold assumption is further exploited by reducing di-
mensions as we stack up layers, resulting in a low dimensional
feature space that is further used as the feature space for two
fMRI classification tasks. In addition to being able to effi-
ciently reducing dimensions, results indicated an improved
performance compared to the baseline methods. Future work
can target application of the proposed method to whole brain
data for brain decoding using 3D convolutional models. We
further suggest to employing manifold tangent based classi-
fication regimes for k- Nearest Neighbor methods to further
improve classification performance.
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