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Abstract—We propose a statistical learning model for classify-
ing cognitive processes based on distributed patterns of neural ac-
tivation in the brain, acquired via functional magnetic resonance
imaging (fMRI). In the proposed learning machine, local meshes
are formed around each voxel. The distance between voxels in the
mesh is determined by using functional neighborhood concept. In
order to define functional neighborhood, the similarities between
the time series recorded for voxels are measured and functional
connectivity matrices are constructed. Then, the local mesh
for each voxel is formed by including the functionally closest
neighboring voxels in the mesh. The relationship between the
voxels within a mesh is estimated by using a linear regression
model. These relationship vectors, called Functional Connectivity
aware Local Relational Features (FC-LRF) are then used to train
a statistical learning machine. The proposed method was tested
on a recognition memory experiment, including data pertaining
to encoding and retrieval of words belonging to ten different
semantic categories. Two popular classifiers, namely k-Nearest
Neighbor and Support Vector Machine, are trained in order
to predict the semantic category of the item being retrieved,
based on activation patterns during encoding. The classification
performance of the Functional Mesh Learning model, which
range in 62-68% is superior to the classical multi-voxel pattern
analysis (MVPA) methods, which range in 40-48%, for ten
semantic categories.

I. INTRODUCTION

Several methods have been developed to understand how
brain processes information. One in particular, aims to predict
or decode the brain state, and/or the type of information asso-
ciated with cognitive processes, based on distributed patterns
of activation in the brain, acquired with functional magnetic
resonance imaging (fMRI) using machine learning methods
[1]–[7]. One of the major motivations of this study is to
propose a model for pattern analysis of fMRI data pertaining
to different cognitive states using statistical learning theory.
This representation involves understanding, manipulating and
predicting the behaviour of the very complex nature of human
brain. Massively coupled dynamic interactions of the brain at
many scales cannot be fully understood by only employing the
measurements recorded from the individual voxels. Therefore,
there has been growing interest in using brain connectivity
to reveal interactions between spatially distant regions. Brain
connectivity describes neural processes as the outcomes of
dynamic coordination among smaller elements [8]. Three main

types of brain connectivity are reported in the literature: i)
structural connectivity, basically reveals anatomic connections
(pathways) of brain, such as physical links between neural
elements, ii) functional connectivity, defined as statistical
dependence between remote neural elements or regions across
time, e.g. correlation and iii) effective connectivity, which
analyses brain connectivity using causal effects between neu-
ral elements, resulting in causal activation paths [9], [10].
Connectivity for decoding is mostly used for model selection
and/or defining the neighbourhood of seed neural elements or
regions [11]. For instance, in a study by McIntosh et al., partial
least squares for activation analysis is performed to construct a
cross block covariance matrix using PET data [12]. Correlation
based measures such as correlation/partial correlation, Granger
causality, independent component analysis (ICA), mutual-
information or coherence are used for the selection of different
functional interdependence functions [13]–[15]. Ryali et al.
measure sparse-partial correlation between multiple regions
using elastic net penalty, which combines L1 and L2 norm
regularization terms, in order to improve the sensitivity of the
correlation measure [16]. Patel et al. propose a conditional
dependence model which accounts for an imbalance between
class conditional and posterior probabilities, to achieve at a
measure of connectivity [17]. Unlike correlation measures,
Shier et al. train a classifier to decode cognitive states af-
ter constructing functional connectivity matrices, analysing
increasing connectivity regions by subtracting connectivity
matrices for each state [7]. Richiardi et al. [6] construct
functional connectivity matrices by using pair-wise Pearson
correlation coefficients and employ graph matching to decode
brain states.

In this study, we introduce an algorithm for modelling
cognitive processes, based on the functional and structural
connectivity in the brain. Structural connectivity is utilized
for anatomic parcellation of the brain regions by clustering
the voxel intensity values measured by fMRI. Next, functional
connectivity is utilized within the clusters by different correla-
tion measures. Functional connectivity matrices are formed to
define functional neighbourhood of a voxel. A local mesh is
formed for each voxel (called the seed voxel) by including the
functionally closest neighbours (called the surrounding voxels)
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Fig. 1: Mesh diagram which represents a seed voxel υ(ti, s̄k)
and it’s p-nearest neighbours at time instant ti .

in the mesh. The relationships between the seed voxel and the
surrounding voxels are modelled by estimating the arc weights
of the mesh in a linear regression model. The arc weights,
called Functional Connectivity-aware Local Relational Fea-
tures (FC-LRF), represent the relationship of each voxel to
its functionally closest neighbours. Finally, the proposed FC-
LRF features are used to train a classifier which recognizes
type of information and/or cognitive state. In the current
study, we particularly focused on classification of the type
of information being encoded and retrieved during memory
operations. During the experiment, participants studied a list of
words selected from one of ten pre-defined semantic categories
and made recognition memory judgements while neural acti-
vation was recorded using fMRI [18], [19]. Accordingly, we
tested whether is the proposed machine learning algorithm can
successfully identify and differentiate the type of information
(i.e. the semantic category that the word belongs to) which is
represented in the brain at a given time considering distributed
patterns of brain activity associated with and during memory
encoding and retrieval.

II. MESH LEARNING AND LOCAL RELATIONAL FEATURES
(LRF)

In this study, BOLD signals υ(ti, s̄j) are measured at time
instants ti, i = 1, 2, 3, · · · , N , at voxel coordinates s̄j , j =
1, 2, 3, · · · ,M , where N is the number of time samples, and
M is the number of voxels. The data set D = {υ(ti, s̄j)}
consists of the voxels υ(ti, s̄j), which are distributed in brain
in three dimensions. Therefore, the position s̄j = (xj , yj , zj)
of a voxel υ(ti, s̄j) at time instant ti is a three dimensional
vector. At each time instant ti, the participant is processing
(either encoding or retrieving) a word belonging to a cognitive
process. Therefore, the samples υ(ti, s̄j) has an object label at
each time instance. In Mesh Learning [20], the cognitive states
are modelled by local meshes for each individual voxel, called
seed voxel υ(ti, s̄j), which is defined in a neighbourhood
system ηp (see;Figure 1). In this mesh, voxel υ(ti, s̄j) is
connected to p-nearest neighbouring voxels {υ(ti, s̄j)}pk=1 by

the arcs with weights {ai,j,k}pk=1. Therefore, the relationship
among the BOLD signals measured at each voxel, are repre-
sented by the arc weights. p-nearest neighbours, ηp, are defined
as the spatially-nearest neighbours to the seed voxel, where the
distances between the voxels are computed using Euclidean
distances between the spatial coordinates s̄j of the voxels in
brain. The arc weights ai,j,k of the mesh are estimated by the
following linear regression equation:

υ(ti, s̄j) =
∑
s̄k∈ηp

ai,j,k υ(ti, s̄k) + εi,j , (1)

where εi,j indicates the error of voxel υ(ti, s̄j) at time
instant ti, which is minimized for estimating the arc weights
ai,j,k. This procedure is conducted by minimizing the expected
square error defined as follows,

E(ε2
i,j) = E

((
υ(ti, s̄j)−

∑
s̄k∈ηp

ai,j,k υ(ti, s̄k)
)2
)
, (2)

where ηp(s̄j) is the set of p-nearest neighbours of the jth

voxel at location s̄j .

Minimizing equation (2) with respect to ai,j,k is ac-
complished by employing Levinson-Durbin recursion [21],
where E(·) is the expectation operator. The arc weights
ai,j,k, which are computed for each seed voxel at each time
instant ti, is used to form the mesh arc vector āi,j =
[ai,j,1 ai,j,2 · · · ai,j,p]. Furthermore, a mesh arc matrix Aj
is constructed by concatenating the mesh arc vectors at each
time instant, Aj = [ā1,j ā2,j · · · āN,j ]T . Finally, feature
matrix F = [A1 A2 · · · AM ] which represents the Local
Relational Features (LRF), is constructed. The feature matrix,
extracted during both memory encoding and retrieval stages is
further used in training and testing phases in the classification
of cognitive processes, respectively. For the details of the mesh
learning algorithm see [20], [22], [23].

The motivation of representing voxels in the brain by local
meshes can be validated by analysing an individual voxel’s in-
tensity change and the change of the sum of squared difference
of intensities ds̄j ,ηp(s̄j) =

∑
s̄k∈ηp(s̄j)[υ(ti, s̄j) − υ(ti, s̄k)]2

in the neighbourhood of that voxel in time. Individual voxel
intensity values, which are measured at each time instant, do
not possess any discriminative information as illustrated in
Figure 2 with red line. Note that the signal intensity value
for a voxel is almost constant for each time instant. Since
the measurements along the time axis correspond to separate
cognitive processes, in most of the problems, it is unlikely
to discriminate them by using standard multi-voxel pattern
analysis (MVPA) methods, which classify the voxel intensity
values by a machine learning tool. On the contrary, there is a
slight variation of the sum of squared distances of intensity
values in differing neighbour sizes. The above observation
slightly shows that the relationships among voxels carry more
information than individual voxel intensity values, at each time
instant.



Fig. 2: Sum of squared difference, ds̄j ,ηp(s̄j) , of intensity values for a voxel and its N-nearest neighbouring voxels over time
in log space. The time axis indicates the fMRI measurements from 10 semantic categories.

III. FUNCTIONAL CONNECTIVITY IN THE BRAIN

The estimated LRF vectors, which represent relationships
among the voxels in the same neighbourhood system, have a
high discriminative power compared to the individual voxel
intensity values. As a result, the Mesh learning algorithm
proposed by [20] performs better than the well-known indi-
vidual voxel based algorithms (see also; Table II). However,
employing the Euclidean distance to form the neighbourhood
system may not fully represent the activation patterns in the
brain, where the spatially distant neurons might exhibit func-
tional connectivity. Nearest neighbourhood in the mesh model
implies spatial surroundings of the seed voxel when Euclidean
distance is used, which may not be the case during cognitive
processing. Additionally, it is well known that spatially close
voxels are strongly coupled during cognitive processes [24].
Therefore, using Euclidean distance for defining neighbour-
hoods for voxels may cause redundant meshes and mesh
arc weights in a feature matrix. A partial improvement for
this problem can be accomplished by the usage of func-
tional connectivity. Selecting functional neighbours for each
voxel and constructing the meshes based on the functional
neighbourhood results in a more discriminative feature matrix
improving the classification performance.

A. Functional Connectivity

Given the time series of voxels υ(t, s̄i) and υ(t, s̄j), where
t = (t1, t2, · · · , tN ) is the time vector as the variables are

consecutive time instants, functional connectivity is defined
as the measure of “similarity” between time series of these
voxels. The voxels are considered to be functionally connected
if they have “similar” functional properties. Therefore, the
functional connectivity depends on the similarity measure. The
“similarity” can be measured, for example, by estimating the
correlation or covariance between pairs of time series. Func-
tional connectivity is expected to capture patterns of deviations
between distributed and often spatially remote regions in brain
[25] and constructed using an inter-regional analysis.

B. Functional Connectivity Graph

In order to represent functional connectivity in brain, we
define a graph G = (V,E), where V = {ϑj}Mj=1 is the set
of nodes (vertices) and E = {ejk}Mj,k=1 is the set of edges.
In this representation, a node ϑj corresponds to a time series,
υ(t, s̄j), which is measured at an individual voxel and an edge
between ϑj and ϑk, is represented as ejk = ρjk, where ρjk,
is the functional connectivity coefficient, which is computed
using a functional similarity measure between time series of
voxel signals υ(t, s̄j), j = 1, 2, 3, · · · ,M , using equation (3).

In this study, edges in the functional connectivity graph are
represented by symmetric dependence measures, in the time
domain. It has been suggested that correlation based measures
are well suited for functional connectivity analysis [26]. Con-
sequently, we use zero-order correlation (cross-correlation) to
measure the functional similarity between time-series. The



zero-order correlation coefficient between two nodes, voxels
ϑj and ϑk in our case, ρjk, is given by

ρjk =
covjk

(
υ(t, s̄j), υ(t, s̄k)

)√
varj

(
υ(t, s̄j)

)
· vark

(
υ(t, s̄k)

) , (3)

where covjk is the covariance of the signals measured at
two voxels, and varj is the variance of the signals measured
at a voxel υ(t, s̄j) and ρjk ∈ [−1, 1].

C. Local Patches

Constructing a functional connectivity graph by considering
all voxels as individual nodes introduces scalability problems.
In order to reduce the computational complexity, the voxels
are first clustered with respect to their locations, where each
cluster is called a local patch. Then, the functional connectivity
graph is formed for the voxels in each local patch with ap-
proximately size π. This approach reduces the computational
complexity from O(M2) to O(Cπ2) where M is the number
of voxels, C is the number of local patches. Note that π �M ,
in practice.

The local patches are constructed by clustering the whole
dataset D = {υ(ti, s̄j)}, i = 1, 2, 3, · · · , N , j =
1, 2, 3, · · · ,M , using Euclidean distance among spatial lo-
cations of voxels s̄j = (xj , yj , zj) in a self-tuning spectral
clustering algorithm [27]. After partitioning the whole dataset
D into C clusters, functional connectivity is measured locally
within these clusters. A cognitive process is then represented
in a local patch (cluster) m, using a within cluster functional
connectivity matrix FCm, each of which forms the set of
functional connectivity matrices FC = {FCm}Cm=1 which is
employed in the model selection for mesh learning algorithm.
Details of the within cluster functional connectivity matrix
computation process are given in Algorithm 1. Figure 3,
represents the local connectivity patterns in two generated
clusters.

Algorithm 1 Computation of Within-Cluster
Functional Connectivity Matrices

Input : Dataset : D = {υ(ti, s̄j)},
i = 1, 2, · · · , N, j = 1, 2, · · · ,M
Number of Clusters: C

Output : The Set of Functional Connectivity Matrices FC

1: FC← Ø
2: [c1, c2, . . . , cC ]←

clusterVoxelsByLocation([s̄1, s̄2, ..., s̄M ])
3: for m = 1 to C do
4: for each pair (j, k) ∈ cm do
5: FCm(j, k)← ρjk // using Equation 3
6: end for
7: FC← FC ∪ FCm
8: end for
9: return FC

IV. FUNCTIONALLY CONNECTED MESH

We define a local mesh around each voxel which consists
of the set of functionally connected voxels. These meshes are
then used to extract LRF features from the meshes which
consist of functionally similar voxels. The suggested model
is called Functional Mesh Learning and the extracted LRF
features are called Functional Connectivity aware LRF (FC-
LRF).

A. Functional Connectivity Aware Local Relational Features
(FC-LRF)

Each element of functional connectivity matrix FCm, rep-
resents a pair-wise correlation of two voxels, in a local patch.
Since, the correlation between any two nodes lies in the
interval [−1, 1] interval, BOLD time-series of two nodes can
either be positively correlated or negatively correlated.

Mathematically speaking, the functionally nearest neighbour
of υ(ti, s̄j) is defined as,

ηfc1

[
υ(ti, s̄j)

]
=
{
υ(ti, s̄k) : max(ρjk),

∀υ(ti, s̄j) ∈ FCm(j′, ·)
}
, (4)

Then, the p-functional neighbourhood of a voxel υ(ti, s̄j)
is generated from the (p − 1)-functional neighbourhood it-
eratively, selecting the functionally nearest neighbour of that
voxel from ηfcp−1

[
υ(ti, s̄j)

]c
, where c indicates the comple-

ment set of ηfcp−1. p-functionally nearest neighbours of voxel
υ(ti, s̄j) are obtained by adding the voxels in ηfcp−1

[
υ(ti, s̄j)

]
to the functionally nearest neighbour of ηfcp , as follows;

ηfcp
[
υ(ti, s̄j)

]
=
{
υ(ti, s̄k) ∪ ηfcp−1

[
υ(ti, s̄j)

]
: max(ρjk),

υ(ti, s̄j) ∈ ηfcp−1

[
υ(ti, s̄j)

]c }
, (5)

For a voxel ϑj at location s̄j , the set of p-functionally
nearest neighbors ηfcp , consists of the p of the most strongly
correlated voxels in row j of the functional connectivity matrix
FCm(j′, ·), which is computed in Algorithm 1, where m is
the index of the cluster which voxel υ(ti, s̄j) belongs to and
j′ is the translated index of the voxel in FCm.

Equation (5) employs only positively correlated samples
( ρjk values close to +1). Another definition for functional
neighbourhood can be given by using the negatively correlated
samples (ρjk values close to −1). In this case, max(·)
operation of equation (5) is replaced by min(·) operation. In
Figure 3, functionally nearest neighbour selection is illustrated
by using most positively correlated (obtained by max(·)
operation) and most negatively correlated voxels (obtained by
min(·) operation). Note that, the order of FC-LRF cannot
exceed the minimum number of voxels in all clusters, p 6
πm ∀m = 1, 2, 3, · · · , C. Details of the FC-LRF extraction
are given in Algorithm 2.



(a) (b)

Fig. 3: Sample functional connectivity matrices constructed for local patch 104 (3a) and 54 (3b) used in experiments. Each
row of represents the correlation between a seed node (row index) and all other nodes in the local patch. The most positively
correlated neighbor for voxel 5 in cluster 104 is voxel 2 and indicated with a circle (3b), the most negatively correlated neighbor
for voxel 9 in cluster 54 is voxel 35 and indicated with a circle (3a).

Algorithm 2 Extract Functional Connectivity
Aware Local Relational Features (FC-LRF)

Input : Dataset : D = {υ(ti, s̄j)},
Order of FC-LRF: p
Functional Connectivity Matrices: FC

Output : Feature matrix F
1: for j = 1 to M do
2: Compute p−functional−neighborhood ηfcp

[
υ(·, s̄j)

]
of υ(·, s̄j) by analysing FC

3: for i = 1 to N do
4: Compute āi,j by minimizing (2) if ηfcp

[
υ(·, s̄j)

]
6= Ø

5: end for
6: Construct Aj using āi,j
7: end for
8: Construct F using Aj
9: return F

V. EXPERIMENTS FOR THE FMRI DATA COLLECTION

In the experiment, a participant is shown lists of words
selected from a pre-defined semantic category, while being
scanned using fMRI, see [18], [19]. After the presentation
of each study list, the participant solves math problems and
following this delay period, decides whether a probe word
matches one of the members of the study list (“old” or
“new”). Employing a delay period (about 14 sec during which
the participant solved math problems) allows independent
assessment of encoding related (i.e. study list period) brain
activation from retrieval related (i.e. during the test probe)
activity patterns. With this approach, one can test whether it
is possible to identify and differentiate semantic categories
of information that is represented in the brain at a given
time based on distributed patterns of brain activity associated
with and during cognitive processing. A total of ten semantic

categories were used in the study, which are animals, colors,
furniture, body parts, fruits, herbs, clothes, chemical elements,
vegetables and tools. We used the neural activation patterns
collected during encoding and retrieval phases, to train and
test the classifier to predict the semantic categories.

The neuroimaging data underwent standard preprocess-
ing stages before the pattern analysis step. Image pro-
cessing and data analysis were performed using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/). Following quality assur-
ance procedures to assess outliers or artefacts in volume and
slice-to-slice variance in the global signal, functional images
were corrected for differences in slice acquisition timing by
re-sampling all slices in time to match the first slice, followed
by motion correction across all runs (using sinc interpolation).
Functional data were then normalized based on MNI stereo-
taxic space using a 12-parameter affine transformation along
with a non-linear transformation using cosine basis functions.
Images were re-sampled into 2-mm cubic voxels and then
spatially smoothed with an 8-mm FWHM isotropic Gaussian
kernel. Next, the functional data were detrended to account
for baseline shifts across runs and for scanner drift across the
entire session for the pattern analysis. Consistent with previous
research of Polyn et al., onsets were shifted forward by three
points to account for the hemodynamic response lag [28].

VI. IMPLEMENTATION OF THE FUNCTIONAL MESH
LEARNING ALGORITHM

Our dataset consists of 240 training samples from encoding
phase and 239 test samples from the retrieval phase with 24
samples in each of 10 semantic categories. Our region of
interest consisted of 8142 voxels covering the lateral temporal
cortex. Results for FC-LRF were generated using k-nearest
neighbor (k-nn) and Support Vector Machine (SVM) methods.
The k value of k-nn and kernel parameters of SVM classifier
are selected using cross validation in training set. The number



TABLE I: Performance results of the Functional Mesh Learning algorithm. Performance measures are indicated Recall as R,
Precision as P and F-Score as F on the header row.

K-nn SVM

Positively Negatively Positively Negatively
Class Correlated Correlated Correlated Correlated
Label Neighbors Neighbors Neighbors Neighbors

P R F P R F P R F P R F
1 63 58 60 63 54 58 54 54 54 57 54 55
2 79 75 77 75 75 75 61 71 65 63 79 70
3 79 76 78 75 71 73 76 79 78 69 75 72
4 74 68 71 78 61 68 64 75 69 58 61 60
5 58 68 63 58 59 59 58 46 51 55 50 52
6 63 72 67 63 81 71 75 63 68 81 54 65
7 67 75 71 75 71 73 62 67 64 65 71 68
8 71 64 67 63 61 62 67 58 62 68 54 60
9 67 56 61 67 65 66 55 67 60 57 71 63
10 54 65 59 67 73 70 52 50 51 63 50 56

Avg 67 68 68 68 67 68 62 63 63 64 62 63

of clusters C in the proposed algorithm is a user specified
parameter. Since the number of voxels in all clusters πm is
always much higher than FC-LRF order p, regardless of the
cluster size, similar functionally connected meshes are formed.
Therefore, it has practically no effect on the performance of
the algorithm. This fact is illustrated in the performance results
in Table III. Graph theoretic approaches can be employed
after calculating functional connectivity matrices in order to
partition connectivity matrices such as [29], [30], but this will
introduce additional thresholds and user specified parameters,
thus spared as a future work. Three different correlation
variants are employed to capture functional similarity between
nodes; i) cross-correlation which is given in equation 3, ii)
peak correlation which captures the relationships between
activation peaks and iii) scan correlation, which measures
the correlations of waveforms at a specific scan of interest.
The overall performance of the algorithm is improved only by
2-4% percent by employing improved correlation measures
as peak correlation and scan correlation. In addition, we
employ two different functionally-nearest neighbour selection
approaches namely, selecting positively and negatively corre-
lated neighbours. The performance results are illustrated in
Table I. Functional Connectivity Toolbox implementation [31]
is used for the computation of the correlation measures.

TABLE II: Classification Performance Comparison of Pro-
posed Algorithm.

Method Empoyed Accuracy
K-nn SVM

Classical MVPA method (Without LRF) 48 40
Mesh Learning [16] 58 45
Functional Mesh Learning using Positive Correlation 68 63
Functional Mesh Learning using Negative Correlation 67 62

The results in Table II show that the employment of
functional connectivity in the mesh learning algorithm [20]
improves classification performances, considerably. When we
classify the raw features of 8142 voxels (without LRF), we

TABLE III: Classification Performances for Varying Number
of Local Patches using zero order correlation.

Number of Local Patches 32 64 128 256 Std.Dev.

Recall 66,97 66,56 67,81 67,39 0,54
Precision 68,44 67,71 67,84 67,77 0,33

observe 48% and 40% performances. Note that Mesh Learning
increases the performances to 58% and 45% and Functional
Mesh Learning further increases the performances up to 68%
and 63% using k-NN and SVM methods, respectively. The
main issue which increases the performance is basically the
selection of nearest neighbours by using functional connectiv-
ity of the voxels in brain.

VII. CONCLUSION

In this study, we propose a new machine learning approach,
Functional Mesh Learning, in order to classify cognitive pro-
cess, based on distributed patterns of neural activation patterns
in the brain. In the current data set, the model was tested during
memory process and performed successfully. The proposed
method employs functional connectivity in order to define
local meshes to represent the relationships between the voxels
and their p-functionally nearest neighbours. Our goal is to be
able to model cognitive processes based on neural activation
patterns in the brain. The present set of results indicate that
the suggested Functional Mesh Learning model can be used to
classify cognitive states and types of information represented
during these cognitive operations based on distributed patterns
of brain activity. In the current study, we only focused on
modelling memory encoding and retrieval processes. Future
research extending these findings to a wider range of cognitive
operations would bring additional insight into the generality
of the proposed algorithm. We expect further improvement
by incorporating additional domain knowledge (i.e. anatomical
maps, DTI) to the learning model and eliminating drawbacks
such as the linearity of the mesh model, selecting the optimal
FC-LRF order value p, lack of modelling brain hierarchy.
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