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Abstract—A new graphical model called Cognitive Process 

Graph (CPG) is proposed, for classifying cognitive processes 

based on neural activation patterns which are acquired via 

functional Magnetic Resonance Imaging (fMRI) in brain. In the 

CPG, first local meshes are formed around each voxel. Second, 

the relationships between a voxel and its neighbors in a local 

mesh, which are estimated by using a linear regression model, 

are used to form the edges among the voxels (graph nodes) in 

the CPG. Then, a minimum spanning tree (MST) of the CPG 

which spans all the voxels in the region of interest is computed. 

The arc weights of the MST are used to represent the 

underlying cognitive processes. The proposed method reduces 

the curse of dimensionality problem that is caused by very 

large dimension of the feature space of the fMRI 

measurements, compared to number of instances. Finally, the 

arc weights computed over the path of the MST called MST-

Features (MST-F) are used to train a statistical learning 

machine.  

The proposed method is tested on a recognition memory 

experiment, including data pertaining to encoding and retrieval 

of words belonging to ten different semantic categories. Two 

popular classifiers, namely k-Nearest Neighbor (k-NN) and 

Support Vector Machine (SVM), are trained in order to predict 

the semantic category of the item being retrieved, based on 

activation patterns during encoding. The classification 

performance of the proposed learning modelis superior to the 

classical multi-voxel pattern analysis (MVPA) methods for the 

underlying cognitive process. 

 

I. INTRODUCTION 

Several methods have been developed to understand how 
brain processes information. In particular, it is aimed to 
predict or decode the brain state associated with cognitive 
processes, based on distributed patterns of activation in the 
brain, acquired with functional Magnetic Resonance Imaging 
(fMRI) using various machine learning methods[1–8]. 
Massively coupled dynamic interactions of the brain at many 
scales cannot be fully understood by only employing the 
measurements recorded from the individual voxels. 
Therefore, there has been a growing interest in using brain 
connectivity and graph theoretical approaches. Graph 
theoretical analysis of functional and structural brain imaging 
data have become an efficient tool to characterize complex 
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interactions taking place in the brain with an elegant 
formalization [9–19]. The main motivation of using graph 
theoretical framework for brain data analysis comes from the 
observation that the human brain exhibits a small-world 
property [20]. A small-world graph has a higher clustering 
coefficient and a lower characteristic path length, compared 
to random graphs, where clustering coefficient is used as a 
measure of cliquishness, and the edges are locally 
agglomerated [10],[19]. Therefore, appropriate graph 
measures help us quantify the topologies of brain networks 
that underlie their complex dynamics. 

In this study, we examine potential applications of graph 
theoretic approaches to local activation patterns which span 
voxels in the entire region of interest to represent cognitive 
processes. We further employ classification methods to 
measure the accuracy of the representation for a multi-class 
classification task. Our method employs the following steps: 
A local mesh is formed around each voxel (called the seed 
voxel) by including the closest neighbors (called the 
surrounding voxels) in the mesh. The relationship between 
the seed voxel and its surrounding voxels are modeled by 
estimating the arc weights of the mesh in a linear regression 
model. The arc weights represent the relationship of each 
voxel to its closest neighbors in 3-dimensional physical 
space. In the proposed model, a graph called Cognitive 
Process Graph (CPG) is first formed by aggregating all the 
local meshes constructed around each voxel. Then, a 
minimum spanning tree of the graph is computed by the arc 
weights obtained at each time instance. Finally, the features 
called Minimum Spanning Tree Features (MST-F), which are 
extracted from the arc weights that reside on the selected path 
of the MST, are used to train a classifier which recognizes 
type of information and/or cognitive process. We particularly 
focused on classification of the type of information being 
encoded and retrieved during memory operations.  

During the experiment, participants studied a list of words 
selected from one of ten pre-defined semantic categories, and 
made recognition memory judgments while neural activation 
was recorded using fMRI [21], [22]. Accordingly, we tested 
whether the proposed machine learning algorithm can 
successfully identify and differentiate the type of information 
(i.e. the semantic category to which the word belongs) 
represented in the brain at a given time. 

We believe that the improvement in classification 
accuracy observed in comparison to standard MVPA 
approaches and efficiency-simplicity of the algorithm 
promotes the potential applicability of the proposed method 
to cognitive tasks. 
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Fig. 1. A sampleMST computed in a BSG is given over 6-neighborhood system, voxels are represented by black dots and corresponding MST 

illustrated with red edges. Notice that edges in the MST have no cycles and span every node with optimal minimum weights over graph. 

 II. MATERIALS AND METHODS 

A. fMRI experiment and pre-processing 

In the experiment, a participant is shown lists of words 
selected from a pre-defined semantic category, while being 
scanned using fMRI, see [21], [22]. After the presentation of 
each study list, the participant solves math problems and 
following this delay period, decides whether a probe word 
matches one of the members of the study list (“old” or 
“new”). Employing a delay period (about 14 sec during 
which the participant solved math problems) allows 
independent assessment of encoding related (i.e. study list 
period) brain activation from retrieval related (i.e. during the 
test probe) activity patterns. With this approach, one can test 
whether it is possible to identify and differentiate semantic 
categories of information that is represented in the brain at a 
given time based on distributed patterns of brain activity 
associated with each. A total of ten semantic categories were 
used in the study, namely animals, colors, furniture, body 
parts, fruits, herbs, clothes, chemical elements, vegetables 
and tools. We used the neural activation patterns that pertain 
to encoding and retrieval phases, to train and test the 
classifier. 

The neuroimaging data underwent standard preprocessing 
stages before the pattern analysis step. Image processing and 
data analysis were performed using SPM5 
(http://www.fil.ion.ucl.ac.uk/spm/). Following quality 
assurance procedures to assess outliers or artifacts in volume 
and slice-to-slice variance in the global signal, functional 
images were corrected for differences in slice acquisition 
timing by re-sampling all slices in time to match the first 
slice, followed by motion correction across all runs (using 
sinc interpolation). Functional data were then normalized 
based on MNI stereo-taxic space using a 12-parameter affine 
transformation along with a non-linear transformation using 
cosine basis functions. Images were re-sampled into 2-mm 
cubic voxels and then spatially smoothed with an 8-mm 
FWHM isotropic Gaussian kernel. Next, the functional data 
were detrended to account for baseline shifts across runs and 
for scanner drift across the entire session for the pattern 

analysis. Consistent with previous research, onsets were 
shifted forward by three points to account for the 
hemodynamic response lag [23]. 

B. Forming Local Meshes and Estimating Arc Weights 

In this study, BOLD signals 𝜐 𝑡𝑖 , 𝑠𝑗   are measured at 

time instants 𝑡𝑖 , 𝑖 = 1,2,3, … , 𝑁, at voxel coordinates 𝑠𝑗 , 

𝑗 = 1,2,3, … , 𝑀, where 𝑁 is the number of time samples, and 

𝑀 is the number of voxels.The data set 𝐷 =  𝜐 𝑡𝑖 , 𝑠𝑗    

consists of the voxels 𝜐 𝑡𝑖 , 𝑠𝑗  , which are distributed in the 

brain in three dimensions. Therefore, the position 𝑠𝑗 =

 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗   of a voxel 𝜐 𝑡𝑖 , 𝑠𝑗   at a time instant 𝑡𝑖  can be 

represented as a 3-dimensional vector. At each time 
instant 𝑡𝑖 , a participant is processing (either encoding or 
retrieving) a word belonging to a specific semantic category. 

Therefore, each sample 𝜐 𝑡𝑖 , 𝑠𝑗   has an object label at each 

time instance. The ten classes are modeled by making use of 
these local meshes for each individual voxel, called seed 

voxel 𝜐 𝑡𝑖 , 𝑠𝑗  , which is defined in a neighborhood system  

𝜂𝑝 . In this mesh, a voxel 𝜐 𝑡𝑖 , 𝑠𝑗   is connected to 𝑝-nearest 

neighboring voxels  𝜐 𝑡𝑖 , 𝑠𝑘  𝑘=1
𝑝

 by the arcs with weights 

 𝑎𝑖 ,𝑗 ,𝑘 𝑘=1
𝑝

. Therefore, the relationship among the BOLD 

response measured at each voxel, are represented by the arc 
weights. 𝑝-nearest neighbors, 𝜂𝑝 , are defined as the spatially-

nearest neighbors to the seed voxel, where the distances 
between the voxels are computed using Euclidean distances 
between the spatial coordinates 𝑠𝑗  of the voxels in brain 

(physical MNI coordinates obtained after preprocessing) 
[24]. The arc weights 𝑎𝑖 ,𝑗 ,𝑘  of the mesh are estimated by the 

following linear regression equation: 

𝜐 𝑡𝑖 , 𝑠𝑗  =  𝑎𝑖 ,𝑗 ,𝑘s𝑘∈𝜂𝑝
𝜐 𝑡𝑖 , 𝑠𝑘 + 𝜀𝑖 ,𝑗 , (1) 

where 𝜀𝑖 ,𝑗  indicates the error of voxel 𝜐 𝑡𝑖 , 𝑠𝑗   at time 

instant 𝑡𝑖 , and 𝜂𝑝 𝑠𝑗   is the set of p-nearest neighbors of the 

j
th

 voxel at 𝑠𝑗 . The arc weights 𝑎𝑖 ,𝑗 ,𝑘  are estimated by 



  

minimizing the squared error  ε𝑖 ,𝑗
2  . This task is achieved by 

Levinson-Durbin recursion, given in [25]. The arc weights 
𝑎𝑖 ,𝑗 ,𝑘 , which are computed for each seed voxel at each time 

instant 𝑡𝑖 , are used to form the mesh arc vector 𝑎 𝑖 ,𝑗 =
[𝑎𝑖 ,𝑗 ,1𝑎𝑖 ,𝑗 ,2 …  𝑎𝑖 ,𝑗 ,𝑝]. The arc vectors are employed for the 

construction of a Cognitive Process Graph (CPG) which is 
defined in the following section. 

C. Forming the Cognitive Process Graph and Computing 

Minimum Spanning Trees 

For an undirected weighted graph, a spanning tree is a 
connected sub-graph containing all of the nodes in the 
original graph with no cycles (see; Fig. 1). The spanning tree 
of a graph with the minimum total arc weights, is called 
Minimum Spanning Tree (MST). Thus, there is only one path 
connecting any two nodes of the MST and no two neighbors 
of a MST node can also be connected. Since human brain 
networks are shown to be cost effective [26], the MST can be 
considered as the backbone of the brain network under study. 
Secondly MST can be seen as a compact representation for 
the entire process resulting in a reduced dimension of feature 
vectors while preserving much of the network information. 
MSTs are widely used for assessing both in brain functional 
networks, resting-state default mode networks and disorder 
discovery in the literature [9], [10], [19], [27].  

Cognitive state classification using fMRI data is a 
challenging task, due to the high dimensionality of the input 
feature space (between 8.000 and 80.000 dimensions) and 
small number of samples per class that are available. The 
problem gets even worse when the number of neighbors for a 
voxel (p) in the local mesh increases (e.g. 10 neighbors in a 
mesh for each voxel, with a total of 8.000 voxels results in an 
80.000 dimensional feature vector). To overcome this 
problem, called the curse of dimensionality problem in the 
literature [28], the arc weights of local meshes are gathered 
under a graph called Cognitive Process Graph (CPG) to 
represent each class. Then, the MST of the CPG is extracted. 

A CPG is an undirected graph, 𝐺𝑖 =  𝑆, 𝐸𝑖 , which 
represents a cognitive processat a time instant 𝑡𝑖 , where the 
nodes of the graph, 𝑠𝑗 ∈ 𝑆, represent the voxel coordinates, 

and arc weights are defined as  {𝑎𝑖𝑗𝑘 , 𝑎𝑖𝑘𝑗 } ∈ 𝐸𝑖 . The voxel 

positions do not change over time, thus, we dropped the time 
index i on the set of nodes 𝑆. Note that in this definition, 
there is a pair of arcs and their corresponding weights 

between two voxels, 𝑠𝑗 ∈ 𝜂𝑝 𝑠𝑘  and 𝑠𝑘 ∈ 𝜂𝑝 𝑠𝑗  . The arc 

weights of the CPG are estimated for each local 
neighborhood of a seed voxel. Therefore, for a seed voxel at 
time instant 𝑡𝑖 , p-number of nearest neighbors are used to 

estimate the arc weights 𝑎 𝑖 ,𝑗 = {𝑎𝑖 ,𝑗 ,𝑘}𝑘=1
𝑝

, using (1). 

The user defined neighborhood parameter (p) is bounded 
by adjacency of each voxel and can be taken as 6, 18 or 26. 
Note that in a regular grid over 3-dimensional space (suppose 
1 unit of spacing), there exists 6 neighbors within 1 unit 
distance, 18 neighbors within ~1.5 unit distance and 26 
neighbors within ~1.7 unit distance.  

Computation of the MST of the CPG at each time instant 
𝑡𝑖  is straightforward after nodes and arc weights are defined. 
One minor detail is that, for each pair of adjacent voxels in a 
local neighborhood (e.g.at location 𝑠𝑗  and 𝑠𝑘 ) there are two 

arcs with different weights. One of them is defined between 
the seed voxel 𝑠𝑗  and its surrounding voxel 𝑠𝑘  . The second 

one is defined between the seed voxel 𝑠𝑘   and its surrounding 
voxel 𝑠𝑗 . The smaller arc weight is taken during the 

computation of MST, which approves the main intuition of 
the minimum spanning tree. We compute a set of MSTs 

{𝑇𝑖}𝑖=1
𝑁 , for each time instant 𝑡𝑖 , considering the arc weights 

𝑎𝑖 ,𝑗 ,𝑘  estimated according to the number of adjacent voxels in 

the mesh with  6, 18 and 26 neighborhood. This procedure is 
conducted for both training and test feature sets. Resulting set 
of MSTs are then used to select final features for 
classification by only considering the arc weights which 
reside on the selected paths by MSTs.  Fig. 1 shows a 
schematic illustration of the MST computed in a CPG over 6-
neighborhood system.   

III. RESULTS 

The goal of our MST-F model is to examine whether the 
MSTs employed on the CPGs could be used to accurately 
classify ten semantic categories, and compare it with classical 
MVPA methods [2] in which voxel intensity values are used 
as features in the classification.Our region of interest consists 
of the lateral temporal cortex of the brain. Results for the 
MST-F are generated using k-nearest neighbor (k-NN) and 
Support Vector Machine (SVM) methods. The k value of k-
NN and kernel parameters of Gaussian Kernel in SVM 
classifier are selected using cross validation in training set. 
Cross validation ratio is selected as 20%-80% for cross 
validation test and cross validation training respectively by 
only using the training set. Classification accuracy is 
measured as the number of correctly predicted test samples 
over the number of total samples in the test set. MST of each 
CPG is computed by Kruskal‟s algorithm [29]. LIBSVM 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) library is used for 
the implementation of SVM [30].  

For assessing the power of MST-F in different size of 
neighborhoods, different sizes of meshes are formed and the 
arc weights are estimated accordingly. In other words, 
meshes are formed considering 6, 18 and 26 neighbors of a 
seed voxel, and then the corresponding MSTs are computed 
for each mesh.  

TABLE I.  CLASSIFICATION ACCURACIES FOR EACH METHOD 

Employed Method 
Number of 

Features 

Classifier Accuracy 

k-NN SVM 

Classical MVPA Method* 8142 44.77% 39.75% 

MST-F (6 neighbors) 8141 54.39% 58.16% 

MST-F (18 neighbors) 8141 58.16% 59.83% 

MST-F (26 neighbors) 8141 59.83% 61.09% 

* Voxel intensities are directly fed to classifiers as features. 

Classification performance using the proposed MST-F 
method and the MVPA method [2] are given in Table I. 
Classical MVPA method provides 45% and 40% 
classification accuracies in our 10-class classification task 
for k-NN and SVM, respectively. By employing MST along 
with CPG, we observe 10% and 18% improvement without 
increasing the dimension of feature space achieving 
classification accuracy up to 54% and 58% for k-NN and 



  

SVM, respectively. We observe further performance gain as 
we increase the neighborhood size, since the region of 
voxels is expanded in order to obtain information from a 
larger number of voxels distributed in a wider region. 

Moreover, it is well-known that SVM with Gaussian 
Kernel can perform classification in infinite dimensional 
spaces [30]. This property of SVM makes it less sensitive to 
the dimensionality problem than k-NN, resulting in a 
performance gain of greater magnitude than k-NN in the 
experiments in which MST-F is employed. 

IV. CONCLUSIONS 

In this study, we propose a graphical model called 
Cognitive Process Graph (CPG) which employs Minimum 
Spanning Trees (MST) in order to define local meshes to 
explore the relationships between the voxels and their 𝑝–
nearest neighbors. In the current data set, the model has been 
tested during memory task and performed successfully. 

In this study, we have only focused on modeling 
memory encoding and retrieval processes. Future 
research would bring additional insight into the 
generality of the success of the proposed algorithm for 
modeling cognitive processes. We hope to improve our 
algorithm by employing functional connectivity in the 
construction of the CPG and the computation of the 
MST.  
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