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Abstract— In this study, an information theoretic approach 
is proposed to model brain connectivity during a cognitive 
processing task, measured by functional Magnetic Resonance 
Imaging (fMRI). For this purpose, a local mesh of varying size 
is formed around each voxel. The arc weights of each mesh are 
estimated using a linear regression model by minimizing the 
squared error. Then, the optimal mesh size for each sample, 
that represents the information distribution in the brain, is 
estimated by minimizing various information criteria which 
employ the mean square error of linear regression model. The 
estimated mesh size shows the degree of locality or degree of 
connectivity of the voxels for the underlying cognitive process.  

The samples are generated during an fMRI experiment 
employing item recognition (IR) and judgment of recency 
(JOR) tasks. For each sample, estimated arc weights of the 
local mesh with optimal size are used to classify whether it 
belongs to IR or JOR tasks. Results indicate that the suggested 
connectivity model with optimal mesh size for each sample 
represent the information distribution in the brain better than 
the state-of –the art methods. 
 

I. INTRODUCTION 

There has been a growing body of recent neuroimaging 
research investigating how information is distributed in the 
brain using functional Magnetic Resonance Imaging (fMRI) 
measurements. In this approach, a method called multi-voxel 
pattern analysis (MVPA), utilizes machine learning 
algorithms to extract and classify distributed patterns of brain 
activity [1 - 7]. Generally, the brain state during a cognitive 
process is measured via fMRI and intensity values of 
multiple voxels which are concatenated under a feature 
vector to train a well-known classifier, such as Neural 
Networks, Naïve Bayes, k-Nearest Neighbor (k-NN) or 
Support Vector Machine (SVM). The classifier is, then tested 
with an unknown feature vector representing a cognitive 
state, or type of information. The classification performance 
can be used to infer the accuracy of the machine learning 
model in successfully representing the underlying cognitive 
state. 

This approach represents a cognitive process by a large 
and fixed size feature vector (as large as the number of active 
voxels, usually, in the order of several thousands). However, 
it does not model the degree of connectivity among the 
voxels. 
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In this study, the distributive nature of discriminative 
information in the brain is investigated by an information 
theoretic approach. Instead of using the feature vector formed 
by voxel intensity values, a set of spatially local meshes [8] 
which represents the spatial relationships among voxels is 
used to represent a sample (cognitive state of a person). 
Around each voxel, called seed voxel, a local mesh is formed 
with its spatially nearest neighbors and the relationships 
among the seed voxel and its neighbors are represented as the 
arc weights of the mesh. For each local mesh, these arc 
weights are estimated using a linear regression model. The 
optimal mesh size for each sample is estimated by 
maximizing some information theoretic criteria.  The error 
variance is used in calculating various information theoretic 
criteria for model order selection. Therefore, the problem of 
estimating the brain connectivity is formulated as a model 
order selection problem. In this study, three different 
information criteria, namely Akaike’s Information Criterion 
(AIC) [9], Bayesian Information Criterion (BIC) [10] and 
Rissanen’s Minimum Description Length Method (MDL) 
[11] are used to find the optimal order of the regression 
model, in other words to select the optimal mesh size for each 
sample. 

Among them, AIC assumes that, there is an unknown 
fMRI data generating process in the brain and AIC attempts 
to approximate this unknown. Hence, it selects the model 
order, i.e. optimal mesh size around a voxel as the one that 
“best” approximates this unknown process. 

On the other hand, BIC finds the likelihood of the mesh 
model formed around each voxel that generates the fMRI 
data by using a prior probability.  This likelihood is used for 
order selection among a finite set of mesh models. Among 
candidate models, it selects the “true” model as the one that 
maximizes the posterior probability. Hence, BIC selects the 
optimal mesh size among a finite set such that a local mesh 
having the optimal mesh size is most likely to represent the 
fMRI data among others. 

MDL has a totally different approach than the previous 
two criteria. It aims to find the mesh model that best 
represents the information. MDL is a formalization of 
Occam’s razor such that, it assumes the best model that 
represents the information as the one that leads to the best 
compression of data. Therefore, it finds the optimal mesh size 
such that local mesh having the optimal mesh size best 
represents the information in a compressed manner.  

The major assumption of this study is that the brain 
makes a trade-off between the degree of complexity 
(increasing mesh size) and the degree of fit (decreasing 
error), as in the above mentioned information criteria. 
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Therefore, the optimal mesh size is the one that wins this 
trade-off and minimizes an information criterion, such as 
AIC, BIC or MDL with respect to mesh size p. For each 
sample, which represents a specific cognitive task applied on 
a person and for each criterion, an optimal mesh size is 
estimated as the one that minimizes the related information 
criterion. Hence, in this work, we assume that the degree of 
connectivity changes in the brain depending on the cognitive 
processes and depending on an individual person, and this 
varying distributive nature can be modeled by a local mesh 
model, where the model order is estimated by the above 
mentioned information criteria. When compared to MVPA 
method, in which a fixed-size vector of voxel intensity values 
are used to train the classifier, the suggested local mesh 
model with a variable mesh size achieves better classification 
performance. This result supports the idea of using 
information theoretic criteria with local relational structure is 
promising to represent brain connectivity. 

 

II. METHODS 

In this study, fMRI was used to record neural activation 
during two working memory tasks, namely item recognition 
(IR) and judgment of recency (JOR) [12]. For both IR and 
JOR tasks, each trial began with the presentation of a 
centered fixation point for 500 ms. Then a study list 
including five consonants were presented one at a time for 
500 ms each. After the presentation of the study list, a task 
cue was presented to indicate the upcoming memory 
judgment (IR or JOR) for 750 ms. Following the presentation 
of task cues, two probe consonants were presented for both 
tasks for 3000 ms. In IR trials, one consonant is from the 
study list where the other one was new. Participants were 
requested to indicate the one belonging to the study list in this 
task with a button press. In JOR trials on the other hand, both 
probes were from the study list, and participants were asked 
to select the probe that was more recent in the study list (Fig. 
1). Preprocessing of neuroimaging data steps included slice 
acquisition timing across slices, realignment of images to the 
first volume for head movement correction, normalization of 
anatomical and functional images to a standard template EPI 
and smoothing of images with a 6-mm full-width half-
maximum isotropic Gaussian kernel. 

 

III. SPATIALLY LOCAL MESH MODEL 

In this study, the fMRI intensity values measured at each 
voxels  at each time instant , , where N 
is the number of samples at spatial coordinates , 

 and M  is the number of voxels, are used to model 
the cognitive states. The voxels are distributed in the brain in 
three dimensions. Therefore,  represents three dimensional 
voxel coordinates, . fMRI measurements are 
concatenated under an NxM matrix, where each row of this 
matrix corresponds to a feature vector of intensity values of 
voxels  , in a time instant .  Therefore,  a sample is 
represented by a vector of voxel intensity values acquired  

 
Fig. 1. Oztekin et al., 2009. A sample sequence for an item recognition 

(IR) trial (shown on panel A) and a judgment of recency (JOR) trial (shown 
on panel B). After the presentation of fixation point, a study list consisting of 
five consonants were presented to the participant. Then, different visual 
masks that cued different tasks were presented. Finally, two test probes were 
shown in both tasks and either JOR or IR judgment was performed.  

from a single trial. Each sample at time instant  is also 
associated with a task label , where . 

In the local mesh model, p-neighborhood  of each 
voxel is defined spatially [8]. Each voxel  is used as 
the seed voxel of the local mesh, and the p-nearest neighbors 

 of this seed voxel are selected as the ones 
whose voxel coordinates has the smallest Euclidean 
distances to that of seed voxel. Hence, a local mesh consists 
of the seed voxel, and its p-nearest neighbors connected by a 
set of arcs in a star topology (Fig. 2).  

The seed voxel is connected to its p-nearest neighbors 
with arc weights  that represent the relationship between 
the seed voxel and its neighbors. The arc weights  are 
estimated using the linear regression equation, 

 

In (1),  is the residual error obtained while estimating 
the arc weights   of the local mesh at time instant  , 
where the seed voxel is  and its p-nearest neighbors 
are . By minimizing the squared error  
acquired in (1), the arc weights  are estimated for each 
local mesh of size p. Using these arc weights , which 
represent the relationship between the voxel  and its 
neighbors , a mesh arc vector 

 of size 1xp is formed. Note that, each 
voxel is, then, represented in terms of its relationships with 
its neighbors using this mesh arc vector   instead of its 
own fMRI intensity value . For a voxel, all mesh arc 
vectors for all time instants are combined to form a  
mesh arc vector . Finally all  
mesh arc vectors for all voxels are combined so that a 

 feature matrix  is constructed for 
a participant. 

 . (1) 



  

 
Fig. 2. A local mesh representing a seed voxel  at the center and its 
p-nearest neighbors    at time instant . The relationship 
between the seed voxel  and its neighbors are represented with the 
arc weights  between them. 

 

IV. MODEL ORDER SELECTION FOR ESTIMATING THE DEGREE 
OF BRAIN CONNECTIVITY 

The size of a local mesh, p represents the degree of 
connectivity for a voxel and its neighbors. Therefore, 
depending on the mesh size, relationships among voxels, in 
other words how the information is distributed in the brain, 
changes. Consequently, finding the optimal mesh size for 
each sample is a crucial step in the suggested local mesh 
model. 

At this point, we assume that there is a trade-off between 
the mesh size which represents the model complexity and 
error variance which represents the degree of fit among the 
voxels in a neighborhood.  Therefore, the degree of 
connectivity can be represented by optimizing this trade-off. 
In this study, three different information theoretic criteria, 
namely Akaike Information Criterion (AIC), Rissanen’s 
Minimum Description Length Method (MDL) and Bayesian 
Information Criterion (BIC), are adopted to select the optimal 
mesh size. In our case, as the mesh size p increases, the 
complexity of local mesh model increases since each voxel is 
then represented as a linear combination of more number of 
its neighbors. On the other hand, as the mesh size increases 
expected value of squared error  decreases showing 
that the model fits better. From equations (4, 5 and 6), it can 
be seen that in all of the information criteria, expected value 
of squared error is found either as itself  (6) or in 
logarithmic function  (4,5). Therefore, an 
increase in the mesh size decreases the  and  
tends to decrease the information criteria. On the other hand, 
an increase in the mesh size tends to increase the information 
criteria. Therefore, for each equation (4, 5 and 6), there is a 
mesh size p that makes the information criterion minimum 
and that p is selected as the optimal mesh size.  

First, the squared error of the linear regression equation at 
each time instant  for each voxel  is computed from 
the following equation: 

Then, to find the expected value of squared error for each 
sample, the average of all squared errors with respect to all 
voxels  at time instant  is approximated with: 

 , (3) 

where  is the expectation operator.  

Finally,  the expected value of squared error of Eq.(3), is 
used to  optimize three different information criteria, which 
are AIC, BIC and MDL, with respect to the model order p, as 
described in the following section. 

A. Akaike Information Criterion (AIC) 
If the data generating process, in our case the generation of 

fMRI data during a cognitive process were known, 
information loss of the local mesh model of size p would be 
found using the Kullback–Leibler (KL) divergence between 
the model and the information distribution with certainty. 
Hence, the optimal mesh size would be selected as the one 
having the smallest KL divergence with the underlying 
cognitive process. However, the information distribution in 
the brain is unknown and we approximate this unknown by 
using AIC for a local mesh formed around each voxel. 
Therefore, we assume that the mesh size p which makes the 
AIC minimum is the one that best approximates the unknown 
information distribution and this p is selected as the optimal 
mesh size. Optimal mesh size around a voxel  at each 
time instant ,  is estimated using Akaike’s Information 
Criterion [9]  for each sample using the following equation
 By taking the average of squared errors for all time instants 

 and for all seed voxels , the expected error for the 
mesh size  is found using : 

 (4) 

where  is the expected value of error, p is the mesh 
size and M is the total number of active voxels. 

B. Bayesian Information Criterion (BIC) 
BIC attempts to estimate a true model among the 

candidates. In our case BIC is used to find the local mesh 
model of optimal mesh size among all the candidate local 
mesh models of size p.  BIC answers how likely the data is 
generated by the local mesh model of size p by estimating the 
posterior probability and selecting the p as the optimal mesh 
size which gives the highest posterior probability. Unlike 
AIC, BIC uses prior probability, hence the prior selection 
affects the accuracy. To find the optimal mesh size with BIC, 
the following formula is adopted from [10], 

 (5) 

where  is the expected value of error, p is the mesh    
size and M is the number of voxels. 

C. Rissanen’s Minimum Description Length (MDL) 
In this study MDL is used to find the local mesh model of 
size p that best represents the relationship among voxels. It 
assumes that, the best model, i.e. the local mesh model 
having the optimal mesh size, requires smallest description 

 . (2) 



  

length. A local mesh model of size M, representing the 
relationship between a voxel and all other voxels would 
include redundant information. Moreover, it would cause 
high dimensionality problem. MDL is used to find how the 
information is represented with the minimum number of 
relationships among voxels without a high information loss. 
MDL, in [11] is adopted to represents the information among 
the voxels in a compressed manner as follows: 

 (6) 

where  is the expected value of error, p is the mesh 
size and M is the number of voxels. 

After an information criterion is evaluated for different 
mesh sizes for each sample, the mesh size p which minimizes 
one of the information criteria is selected as the optimal mesh 
size for that sample at . 

, (7) 

where  is either  or  or  for 
sample at  belonging to participant . Notice that,  is 
optimal depending on the choice of a particular criterion. 

Note that, optimal mesh size estimated for each sample, 
depends on three parameters; i) the minimized information 
criterion, ii) the participant to which the sample belongs and 
iii) cognitive task studied during the fMRI measurements.  
Suppose that the optimal mesh size for an information 
criterion IC and participant   is represented by a random 
variable . Then, for each , mean and standard deviation 
(std) of the optimal mesh size  are approximated by, 

, (8) 

, (9) 

respectively. In the above approximation,  represents the 
number of test samples measured from participant  (  is 
the same for all participants. Hence, it is independent of x). 
Moreover, , where  is either IR or JOR, represents the 
number of test samples belonging to task  measured from a 
participant. In the dataset,  meaning that 
number of test samples belonging to IR and JOR are equal. 
Similarly, for each task T the mean and std of the optimum 
mesh size over all participants can be approximated by, 

, (10) 

, (11) 

where  is the label of sample at time instant  and  
represents all samples belonging to task . Recall that there 
are total of 8 participants. 

Optimal mesh size selection for each information criterion is 
handled independently. Therefore, from each criterion, an 
optimal mesh size is acquired for each participant and for 
each cognitive task. This size is used in further classification 
tasks only related with that information criterion. Hence, 
there is no unique and common optimal mesh size for a 
sample estimated by minimizing different information 
criteria. 

V. RESULTS 

Since optimal mesh size varies for each sample and for 
each person under each cognitive task, information criteria 
can be used to optimize it for each sample to improve 
classification accuracy. Moreover, a comparison of the 
classification accuracy across three information criteria can 
indicate the criterion that yields the best performance. We 
modeled neural activation recorded from 8 participants while 
they performed the IR and JOR tasks in a scanner. 

Our region of interest (ROI) consisted of 2030 voxels that 
were identified from a whole-brain voxel-wise contrast 
assessing the active voxels during both tasks, with a threshold 
of p < .001, uncorrected. For the mesh size p, the dimension 
of feature vector can be represented as px2030.   Therefore, 
as the mesh size increases, the dimension of feature vector 
increases linearly. Each participant has 240 training samples 
(120 for IR and 120 for JOR tasks) and 80 test samples (40 
for IR and 40 for JOR tasks).  

For each test sample, the optimal mesh size  is 
estimated for each information criterion in the interval [2, 
100]. This interval is taken large to assure that the minimum 
of the criterion is not local, instead global. Therefore, for all 
participants it is assured that the optimal mesh size lies in the 
interval [2,100]. Then, a spatially local mesh of size  is 
formed around each training sample, so that each training 
sample will turn into a feature vector of arc weights with size 

x2030. On the other hand, a spatially local mesh of size 
  is also formed around the test sample at . A classifier is 

 

   

Fig. 3.  Information criteria vs. mesh size plots for the same sample of the same participant indicating that the minimum of information criteria may be 
different for the same sample. 



  

 
trained using the training samples of size x2030 and 
whether the test sample belongs to IR or JOR is found using 
the classifier.  Therefore, if another test sample at  has the 
optimal mesh size , then local mesh of size  is formed 
for each voxel in the training sample and the resulting feature 
vector will be used to train another classifier. Hence, if 

 for test samples at  and , then these test samples are 
classified using different classifiers which receive different 
sizes of feature vectors. For each participant, classification 
accuracies are found using k-NN method where the k value is 
found using cross validation in the training data. 

Our data is composed of four runs, hence, we employed 4-
fold cross validation. At each step, 3 runs are used as training 
data and the remaining run is used as test data. In Table I, 
average classification performances of 4-fold cross validation 
using k-NN are displayed across the 8 participants , 

. Performance results denoted in bold indicate the best 
performance for each participant. The last column of Table I 
presents average k-NN accuracy of MVPA method in which 
voxel intensity values are directly fed to the classifier. Note 
that, the information criterion giving the best performance 
changes from person to person. Among these information 
criteria, using MDL to select optimal mesh size for each 
sample is always better than or equal to MVPA method. 
Hence, results indicate that MDL can be used to select the 
optimal mesh size such that local mesh model having optimal 
mesh size can successfully represent the relationships among 
voxels. While AIC increases the performance using MVPA 
method or gives the same performance with MVPA for 7 
participants, it fails to find the optimum order for participant 
7 (P7).  Similarly, selecting BIC is better than or equal to 
MVPA for 7 participants but, it fails to optimize the result for 
participant 3 (P3). However, the average performances 
acquired using three criteria over all participants are the same 
(58%) and on average, using each of these criteria gives 
better accuracy than using MVPA method.  

Although the average accuracies are equal for each of 
these three criteria, the one that has the maximum 
performance changes from participant to participant. For 
example, BIC has the highest performance (57%) for P7 while 
AIC has the lowest performance (54%). On the contrary, for 
P1, AIC has the best performance among others (61%) where 
BIC has the worst performance (58%). Hence, we can state 
that brain connectivity, represented with a local mesh model 
having variable size, is different for each participant. As a 
result, the best information criterion to select optimal mesh 
size differs for participants. The performances might seem 
low for a two – class classification task. Yet, this situation is 
mainly caused by the design of the experiment, where the 
encoding phases of both IR and JOR are the same. Table II 
represents the standard deviations of classification 
performances among 4-fold. As it can be seen, for some 
participants standard deviation among 4-fold is high (e.g. 
using BIC for P2). On the other hand using BIC for P3 results 
in a low standard deviation meaning that the classification 
performance changes slightly based on the training and test 
data used. 

 

TABLE I.  AVERAGE CLASSIFICATION PERFORMANCES (K-NN) AMONG 
4-FOLD USING THREE CRITERIA AIC, MDL AND BIC WITH LOCAL MESH AND 

USING MVPA METHOD AMONG 8 PARTICIPANTS 

 

TABLE II.  STANDARD DEVIATION OF  CLASSIFICATION 
PERFORMANCES  AMONG 4-FOLD  USING THREE CRITERIA AIC, MDL AND BIC 

WITH LOCAL MESH AND USING MVPA METHOD AMONG 8 PARTICIPANTS 

 
Optimal mesh size for a sample  is found using (7) 

and for three different criteria, three optimal mesh sizes are 
found. Figure 3 represents information criteria vs. mesh size 
plots for the same sample belonging to participant  at . 
For this sample, , meaning that optimal mesh size 
for the sample estimated using AIC is 47. However, 

 since at these values related criterion 
becomes minimum (Fig. 3). On the other hand, for the same 
participant, optimal mesh size intervals may change with the 
criterion (Table III). For example, optimal mesh sizes for the 
samples belonging P5 changes in the interval [23, 29] if AIC 
is used and if BIC is used this interval is changed to [20, 23]. 
Furthermore, if MDL is used, all samples belonging to P5 
have the optimal mesh size as 23. As a result, it can be stated 
that behavior of optimal mesh size for each sample changes 
with the information criterion used. 

From Table III it can also be seen that mean  and 
standard deviations  of optimal mesh size distributions 
vary for each participant. Moreover, for some criterion, std 

 is 0, indicating that  is same for all samples. On the 
other hand high standard deviation indicates a spread of 
optimal mesh sizes. Furthermore, it can be seen that mean 

 and standard deviations  of optimal mesh size 
distributions do not differ from task to task (Table IV). 

 



  

TABLE III.  OPTIMAL MESH SIZE INTERVALS, MEAN ( ) AND STD ( ) OF THESE INTERVALS FOR 8 PARTICIPANTS ESTIMATED USING THREE CRITERIA 
AIC, MDL AND BIC 

 
 

In this study, we do not propose “the best” criterion to 
be used in the classification. Rather the results indicate 
that, following an information theoretic approach to 
estimate the optimal mesh size of local mesh model and 
using the corresponding feature vectors in the 
classification, performs better than classical MVPA 
methods. 

TABLE IV.  MEAN ( ) AND STD ( ) OF OPTIMAL MESH SIZE 
INTERVALS FOR 2 DIFFERENT TASKS FOUND USING THREE CRITERIA AIC, 

MDL AND BIC 

 
VI. CONCLUSION 

In this paper, we propose a model for distinguishing 
cognitive states based on distributed patterns of neural 
activation in the brain. In this model, each voxel is 
represented with its relationships among its neighbor 
voxels in a local mesh. Then for each class, the optimal 
mesh sizes are found using three different information 
criteria. Since the optimal mesh size greatly varies from 
sample to sample even belonging to same participant, one 
aim was to develop a method that determines the optimal 
mesh size for each sample. In addition, we provided a 
performance comparison of three information theoretic 
methods to determine the optimal mesh size. Results 
indicated that all the Information Criteria can successfully 
estimate the optimal mesh size and improve the overall 
classification performances on the average. However, 
MDL always beets the performance of the classical MVPA 
method for all participants. We also showed that 
information criteria can be used to select optimal mesh 
size for each sample instead of using it for each participant 
as in [13]. 

In the future studies, local mesh of varying size may be 
formed around each voxel during the same cognitive 
process using the information criteria. Moreover, to 
achieve a more generic success, presented method will be 
implemented for different cognitive tasks. In the future, 
this method will be employed to select the optimal mesh 
size in local meshes formed with functionally nearest 
neighbors, using functional connectivity matrices [14]. 
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