Mesh Learning for Classifying
Cognitive Processes

Mete Ozay*, Orhan Firat*
llke Oztekin**, Uygar Oztekin***,
Fatos T. Yarman Vural*

* Middle East Technical University, Ankara
** Koc University, Istanbul
*** Google



Motivation:
Can we model the brain
activities measured by fMRI as
a machine learning system?

Algorithms

that can
learn

Human Machine



Focus: Design a classifier to
model the distributed patterns of
activity in memory

1.Training

2. Test
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1. Encoding: subject studies
objects from a category

2. Retrieval: subject is
asked to recognize a test
object




fMRI Data Acquisition
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Image samples




fMRI| dataset

= 10 semantic categories:

= animals, colors, furniture, body parts, fruits,
herbs, clothes, chemical elements, vegetables
and tools.

= Dataset:
= 24 samples /category

= 240 training + 240 test samples from the
encoding and retrieval phase and

= Number of voxels:
= Memory: 8142
= \\W/hole Brain: 82 600



fMRI intensity values of a voxel
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Spatial Distribution of Voxel

Intensities for a time instant t
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fMRI intensity values as a
function of time

Timet=1 Class: 2

State of the art

: performance

~25-30%

5 (e.g. Oztekin & Badre,
2011)

Voxels distributed on Z-axis

Voxels distnbuted on X-axis




Spatio-temporal Distribution of
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Voxel intensity values for 10 class at 10
neighboring voxels

Intensity Values Measured at 10 Voxels
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Difference of intensity values
between two neighboring voxels



Neurons are massively

Interconnected

= Relationships among the voxels are more
discriminative then the individual voxel
Intensity values to represent a certain
category

Need to model the relationships among the
voxels



A Local Mesh Model:

A voxel is represented In
a neighborhood system

m[o(t,5)]=t0(t,5):[5 -5] <[5 -5], v o(t.5) D)
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L ocal Relational Features: LRF

Algorithm 1 : Extract Linear Relation Features (LRF )3 /7f

Input: IDataset : & = { U(fi,gj) }-
Order of LRF : p
Begin
=101 :

1. Jor =1 to M
2. Jor 1—1 to IN
3. Compute p-neighborhood 7., rz;ll(fi-!gj )] of U(tugj ) :
4 . Compute g, ; optimizing ( £2ij
5. enndfor (1)
o Construct A; using a, ; ;
7. enndfor (3)
8. Construct F using .A;

FEnd

- — — T
Output: Feature matrix I Aj o I:al’j az’j Tt aN’j:I



Mesh Learning with Spatial

Neighborhood

Algorithm : Classification with Linear Relation Features (LRF); classify.lrf

Input: Training and Test Datasets : 2% ={v"(t,5,)}, D°={v"(t,5)L

Training Labels : L, :{L }11

Orderof LRF : p
Begin

PP =[], F=[1;

1. E <« If(7p);
2. E,.<If (D%p);

3. Perform classification on F, and F. using a classification algorithm with the algorithm
parameters 6.

~ L

~ N

L. = {L }H « classify(E,, L, ,E.,0);
End
Output: ﬁ&. ={f; };



Performance of Mesh Learner with Spatial
Neighborhood

10 class classification performances using 8142 voxels.

%  LRFOrder Values (p) ~ Without LRF ~ KPCA PCA ICA
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ICA: Independent component analysis
PCA: Principal Component Analysis
KPCA: Kernel Principal Component Analysis



Experiments on Mesh Learner with
Spatial Neighborhood
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Single voxel performance for 10 classes.
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Qutput Class

1Q

Confusion Matrizx
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Discussion on Mesh Learning
with Spatial Neighborhoods

Spatial neighborhood with

L2-norm implies Employ functional
anatomical surroundings . connectivity.

of a voxel; which may not

be the case in cognitive

process.

Selecting the optimal F_ind voxels which are
value of p is not validated . highly correlated to other
and introduced as a user voxel. p changes for each

parameter. voxel.
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Mesh Learning with Functional
Neighborhood

1. Need to define functional connectivity among
the voxels

2. Define Functional Neighborhood

3. Apply functional neighborhood to k-nn to and
select k-functionally-closest neighbors which
Implies coupled-activation in cognitive
Process



Functional Connectivity

m Statistical association or
dependency among the 5%
time series of voxels R A8




Modeling Methods of Brain Using Connectivity

T
ﬂ'“" F oot o .
--|| L"-u - ‘3'- "-"'
n-" | - — .

el r—ia o b

1. Find correlation between time series of two voxels, using a
correlation metric .

2. Construct correlation matrix by using correlation measure of
each pair of voxels.
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Cross Correlation Metric

= Cross-correlation of any two individual time-
series (i) atlag #, p;(n), Is defined as




Scalabllity of Functional
Connections

= Connectivity matrices are expensive in voxel
level, when no approximations are made

= Considering functional relations of a voxel with
all other voxels;

m 8142 voxels makes 33M functional relations
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Design and Use of Functional

Connectivity
= Cluster voxels by their locations

® Measure correlation metric within clusters to
generate connectivity matrices

= Use connectivity matrices to find functionally-
nearest neighbors



Functional
connectivity map
among the clusters




Design of New Neighborhood System

= Rather then selecting p-spatially closest points by
L2-norm; select p-functionally closest points

= Select p-functionally closest points analyzing rows of
within-cluster connectivity matrix

= Construct neighborhood-set with p-functionally
closest voxels and calculate LRF accordingly
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Given a voxel Select p-Functionally
Closest Voxel(s)

Class [1] Cluster [26] : Peak Correlation Numel[28]

o6 Selecting p=4 functionally
closest voxels Y

For voxel v, In cluster c,
where i=1 and k=26;
Resulting neighbor indexes by
considering highly correlated

voxels in the cluster:

i={3,6,9,14
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C C
Jl'lc C
% LRF Order Values with Functional Connectivity (p) Without FC (raw LRF)
2 3 4 5 6 7 8 9 10 8 9 10
k-nn 61,9384 62,3732 62,3551 64,4565 62,7899 64,0399 60,2717 61,9384 61,1051 56 56 57




Output Class

Performance of Mesh Learning with

10

Functional Connectivities, p

Confusion Matrix
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Knn Classification for Each Class with Best FC Aware LRF
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Conclusion

= Mesh Learning model

= allows us to identify and differentiate classes
of information represented in the brain during
memory encoding and retrieval processes

* Functional connectivity represents the mesh
better than the spatial connectivity
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Implications

= \We ultimately aim to read minds
» Better understand intention
= Better interpret feedback

= Although we are not there yet, we are as
close as we can get!
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Thanks to Google

Project Website:
neuro.ceng.metu.edu.tr



Open Issues

= Estimating the true number of clusters
= Hierarchical neighbor selection
= Network measures will be incorporated

= Combination and use of between cluster
metrics
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YWariance of Signal differences (log)

Signal differences (log)

Yariance of Signal Differences for Each Woxel with Warying Mumber of Meighbors
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