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Motivation: 

Can we model the brain 

activities measured by fMRI as 

a machine learning system? 

Algorithms  

that can 

learn 

Human Machine 
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Focus: Design a classifier  to 

model the distributed patterns of 

activity in memory 

Machine                     Human                        _                           

1.Training   1. Encoding:  subject studies  

    objects from a category  

2.Test   2. Retrieval:  subject is  

    asked to recognize a test 

    object 
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fMRI Data Acquisition  
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(Öztekin & McElree, 2007; Öztekin et al., 2009; Öztekin & Badre, 2011) 



Image samples 
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  fMRI dataset 

 10 semantic categories: 

 animals, colors, furniture, body parts, fruits, 

herbs, clothes, chemical elements, vegetables 

and tools. 

 Dataset:  

 24 samples /category 

 240 training + 240 test samples from the 
encoding and retrieval phase and 

 Number of voxels:  

 Memory: 8142 

 Whole Brain: 82 600 
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fMRI intensity values of a voxel  
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Spatial Distribution of Voxel 

Intensities for a time instant t 
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fMRI intensity values as a 

function of time 
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State of the art 

performance 

~25-30% 
(e.g. Öztekin & Badre, 

2011) 



Spatio-temporal Distribution of 

Voxel Intensities 
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Voxel intensity values for 10 class at 10 

neighboring voxels  
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Difference of intensity values 

between two neighboring voxels 
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Neurons are massively 

interconnected 
 Relationships among the voxels are more 

discriminative then the individual voxel 

intensity values to represent a certain 

category 

 

 

Need to model the relationships among the 

voxels 

13 



A Local Mesh Model:  
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A voxel is represented in 

 a neighborhood system 



Local Relational Features: LRF 
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Mesh Learning with Spatial 

Neighborhood 
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Performance of Mesh Learner with Spatial 

Neighborhood  
10 class classification performances using 8142 voxels.  
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ICA: Independent component analysis 

PCA: Principal Component Analysis 

KPCA: Kernel Principal Component Analysis 



Experiments on Mesh Learner with 

Spatial Neighborhood  

             Single voxel performance for 10 classes.  
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Discussion on Mesh Learning 

with Spatial Neighborhoods 
 Spatial neighborhood with 

L2-norm implies 

anatomical surroundings 

of a voxel; which may not 

be the case in cognitive 

process.  

  

 Selecting the optimal 

value of p is not validated 

and introduced as a user 

parameter. 

  

 

 

 

Employ functional 

connectivity. 

 

 

 

Find voxels which are 

highly correlated to other 

voxel.  p changes for each 

voxel. 
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 Mesh Learning with Functional 

Neighborhood 

1. Need to define functional connectivity among 

the voxels 

2. Define Functional Neighborhood 

3. Apply functional neighborhood to k-nn to and 

select k-functionally-closest  neighbors which 

implies coupled-activation in cognitive 

process 
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Functional Connectivity 

 Statistical association or 

dependency among the 

time series of voxels 
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Modeling Methods of Brain Using Connectivity 

 

1. Find correlation between time series of two voxels,  using a 

correlation metric . 

2. Construct correlation matrix by using correlation measure of 

each pair of voxels.  
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Cross Correlation Metric 

 Cross-correlation of any two individual time-

series (i,j), at lag h,  ρij(h) , is defined as 
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Scalability of Functional 

Connections 

 Connectivity matrices are expensive in voxel 

level, when no approximations are made 

 

 Considering functional relations of a voxel with 

all other voxels;  

 

 8142 voxels makes 33M functional relations 
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Design and Use of Functional 

Connectivity 
 Cluster voxels by their locations 

 

 Measure correlation metric within clusters to 

generate connectivity matrices 

 

 Use connectivity matrices to find functionally-

nearest neighbors 
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k=256 sub-regions 

k=256  of each 

   sub-regions 

s≅35 voxels 

 .   ...   

. 

Functional 

connectivity map 

among the clusters 

Functional connectivity for each cluster, for a given class 
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Design of New Neighborhood System 

 Rather then selecting p-spatially closest points by 

L2-norm; select p-functionally closest points 

 

 Select p-functionally closest points analyzing rows of 

within-cluster connectivity matrix 

 

 Construct neighborhood-set with p-functionally 

closest voxels and calculate LRF accordingly 
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Given a voxel Select p-Functionally 

Closest Voxel(s)  

Selecting p=4 functionally  

closest voxels vj  

 

For voxel  vi  in cluster  ck 

 

where  i=1  and  k=26; 

 

Resulting neighbor indexes by 

considering highly correlated 

voxels in the cluster: 

 

 j={3,6,9,14}  
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Classification Performances (%) with Spatial and 

Functional connectivity  

  

% LRF Order Values with Functional Connectivity (p) Without FC (raw LRF) 

2 3 4 5 6 7 8 9 10 8 9 10 

k-nn 61,9384 62,3732 62,3551 64,4565 62,7899 64,0399 60,2717 61,9384 61,1051 56 56 57 

  



Performance of Mesh Learning with 

Functional Connectivities, p=10  
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Her sınıf için elde edilen en yüksek performans 

değeri 



Conclusion 

 Mesh Learning model 

 allows us to identify and differentiate classes 

of information represented in the brain during 

memory encoding and retrieval processes 

 

 Functional connectivity represents the mesh 

better than the spatial connectivity 
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Implications 

 We ultimately aim to read  minds 

 Better understand intention 

 Better interpret feedback 

 ... 

 Although we are not there yet, we are as 

close as we can get! 
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Thanks to Google 

Project Website: 

neuro.ceng.metu.edu.tr  
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Open Issues 

 Estimating the true number of clusters 

 Hierarchical neighbor selection  

 Network measures will be incorporated 

 Combination and use of between cluster 

metrics 
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