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Abstract— Machine learning algorithms have been widely
used as reliable methods for modeling and classifying cognitive
processes using functional Magnetic Resonance Imaging (fMRI)
data. In this study, we aim to classify fMRI measurements
recorded during an object recognition experiment. Previous
studies focus on Multi Voxel Pattern Analysis (MVPA) which
feeds a set of active voxels in a concatenated vector form to a
machine learning algorithm to train and classify the cognitive
processes. In most of the MVPA methods, after an image pre-
processing step, the voxel intensity values are fed to a clas-
sifier to train and recognize the underlying cognitive process.
Sometimes, the fMRI data is further processed for de-noising
or feature selection where techniques, such as Generalized
Linear Model (GLM), Independent Component Analysis (ICA)
or Principal Component Analysis are employed. Although these
techniques are proved to be useful in MVPA, they do not model
the spatial connectivity among the voxels.

In this study, we attempt to represent the local relations
among the voxel intensity values by forming a mesh network
around each voxel to model the relationship of a voxel and
its surroundings. The degree of connectivity of a voxel to its
surroundings is represented by the arc weights of each mesh.
The arc weights, which are estimated by a linear regression
model, are fed to a classifier to discriminate the brain states
during an object recognition task. This approach, called Mesh
Learning, provides a powerful tool to analyze various cogni-
tive states using fMRI data. Compared to traditional studies
which focus either merely on multi-voxel pattern vectors or
their reduced-dimension versions, the suggested Mesh Learning
provides a better representation of object recognition task.
Various machine learning algorithms are tested to compare
the suggested Mesh Learning to the state-of-the art MVPA
techniques. The performance of the Mesh Learning is shown
to be higher than that of the available MVPA techniques.

Index Terms— Functional Magnetic Resonance Imaging
(fMRI), feature extraction, machine learning, brain decoding,
classification, Multi Voxel Pattern Analysis (MVPA)

I. INTRODUCTION

Representation of information in the human brain is one of
the most challenging problems in the field of neuroscience.
Even though considerable research has been made, the prob-
lem still remains unsolved. Neuroimaging techniques such
as functional Magnetic Resonance Imaging (fMRI) provides
the opportunity to investigate the underlying brain regions
which participate in the cognitive process being monitored.
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However, the mathematical representation of these neural
mechanisms is a very challenging and equally complex
problem.

The availability of brain data reflecting specific cognitive
processes has provided researchers a new range of methods
and approaches to study the human brain [1]–[5]. One recent
approach is to employ the multiple voxel measurements
representing a cognitive task to train a machine learning
method. This approach, called Multi-voxel Pattern Analysis
(MVPA), has enabled the researchers to infer the degree
to which a type of information or a cognitive process is
represented in the brain at a given time, based on distributed
patterns of neural activation.

It has been reported that different voxels are active when
the subjects are experimented with different object categories
in VT cortex [6]–[10]. In [11], it has been observed that
different object categories have independent neural basis both
functionally and spatially. Ishai et al. stated that the neural
activities of the non-face objects are more widely distributed
than face objects [12]. There are also numerous studies
giving comparative studies about classifying the category of
objects from fMRI data [13], [14].

The primary objective of this study is to model and
recognize the complex patterns of the neural mechanisms
associated with different object categories. In the state-of-the
art MVPA techniques, used for this purpose, measurement
vectors of the selective voxels are concatenated under the
same feature vector and fed to a classifier to train and
recognize an object category. In this study, we employ a new
and more powerful MVPA technique, called Mesh Learning
[15], which models the relationships among the neighboring
voxels connected both spatially and/or functionally, in a pre-
defined neighborhood model. In the current investigation of
the the object recognition problem, our goal is to increase the
performance of classification algorithms which predict the
type of information represented in the brain at a given time.
In the following sections, first, the theoretical background
of the Mesh Learning model is introduced briefly. Then the
suggested model is tested to the state of the art MVPA
method reported in [1]. The tests are performed on the fMRI
data collected from a healthy subject during a two class
object recognition task.

II. MESH LEARNING

In Mesh Learning [15], local meshes are generated for
modeling the cognitive states. For each individual voxel,
BOLD signals are measured, which are denoted with
υ(ti, s̄j), where ti indicates the time instance and s̄j indicates



the voxel coordinates in a three dimensional Euclidean
Space. The mesh around each voxel is defined in a neigh-
borhood system ηp. The steps of the LRF extraction from
this mesh model are as follows. In the first step, a predefined
distance measure is used to determine the p-nearest neighbors
of each voxel, where p determines the number of connections
of a certain voxel to its neighboring voxels; large p values in-
dicate wider connections whereas low values represent local
connections. In this study, two types of distance measures
are used to define the p-nearest neighbors of each voxel.
The first one is the Euclidean distance between the voxel
coordinates. The second one is the functional connectivity
distance, which measures the similarity between the time
series of two voxels. The definitions of spatial and functional
similarity is provided in the next section. In the second step, a
local mesh is formed around each voxel by linking this voxel
to its p nearest neighbors. In the third step, the weights on
the edges connected to the center voxel are estimated using
a linear regression model. The following regression equation
is used for determining the edge weights ai,j,k of the mesh:

υ(ti, s̄j) =
∑
s̄k∈ηp

ai,j,k υ(ti, s̄k) + εi,j , (1)

where εi,j indicates the error of the voxel υ(ti, s̄j) at a
time instant ti, which is minimized for estimating the edge
weights ai,j,k. This is conducted by minimizing the square
error defined as follows,

ε2
i,j =

(
υ(ti, s̄j)−

∑
s̄k∈ηp

ai,j,k υ(ti, s̄k)
)2

, (2)

where ηp(s̄j) is the set of p-nearest neighbours of the jth

voxel at location s̄j .
Then, a p-dimensional feature vector is generated using

the entries of estimated edge weights. Optimal mesh size, p̂,
is estimated by leave-one-out cross validation technique. In
the final step, edge weight vectors obtained from each mesh
are concatenated under an N × p dimensional vector, where
N is the number of active voxels. These vectors are called
Local Relational Features (LRF), when the local meshes are
obtained by using spatial neighborhood. Similarly, when the
meshes are formed by using the functional neighborhood,
the edge weights are called Functionally Connected Local
Relational Features (FC-LRF) [16].

III. SPATIALLY AND FUNCTIONALLY CONNECTED MESH

As mentioned above, the local meshes can be defined
using two similarity measures. Euclidean distance is used to
define spatial connectivity [15]. On the other hand, functional
connectivity is defined by measuring functional similarities
between the time series of voxels [17].

The motivation for representing voxels as a local mesh
structure by considering spatial connectivity is the selection
of p number of neighbor voxels where the neighborhood
distance is given by

ds̄j ,ηp(s̄j) =
∑

s̄k∈ηp(s̄j)

[υ(ti, s̄j)− υ(ti, s̄k)]2.

In functional connectivity analysis, voxels having close
functional properties with respect to a functional measure,
are selected to constitute the local mesh structure [16]. This
particular selection considering the functional similarities is
expected to express the activity patterns emitted not only in
local regions but also in distributed regions. In this study, the
functional nearest neighbor of υ(ti, s̄j) is defined as

ηfc1

[
υ(ti, s̄j)

]
=
{
υ(ti, s̄k) : max(ρjk),

∀υ(ti, s̄j) ∈ FCm(j′, ·)
}
,

(3)

where FCm is defined as the within cluster functional
connectivity matrix, each of which forms the set of functional
connectivity matrices FC = {FCm}Cm=1 which are gener-
ated by employing a self-tuning spectral clustering algorithm
[18] to cluster the whole dataset D = {υ(ti, s̄j)}, i =
1, 2, 3, . . . , N , j = 1, 2, 3, . . . ,M , using Euclidean distance
among spatial locations of voxels s̄j = (xj , yj , zj). Having
partitioned the whole dataset D into C clusters, functional
connectivity is measured locally within these clusters. A
cognitive process is then represented in a cluster m using
the matrix FCm. The set of p-functionally nearest neighbors,
ηfcp , consists of the most functionally similar p voxels drawn
from the jth row of the functional connectivity matrix
FCm(j′, ·), where m is the index of the cluster that has the
voxel υ(ti, s̄j) as a member, and j′ is the translated index
of the voxel in FCm.

In (3), ρjk is defined by the zero-order correlation coeffi-
cient between two voxels ϑj and ϑk, as

ρjk =
covjk

(
υ(t, s̄j), υ(t, s̄k)

)√
varj

(
υ(t, s̄j)

)
· vark

(
υ(t, s̄k)

) , (4)

where covjk is the covariance of the signals measured at ϑj
and ϑk, and varj is the variance of the signals measured at a
voxel υ(t, s̄j), where t = (t1, t2, · · · , tN ) is the time vector
and ρjk ∈ [−1, 1].

Having defined the functional measure, we can define a
procedure for constructing the p neighborhood of a voxel,
υ(ti, s̄j) which is generated from the (p − 1)-functional
neighborhood by iteratively selecting the functionally nearest
neighbour of that voxel from ηfcp−1

[
υ(ti, s̄j)

]c
, where c

indicates the set complement of ηfcp−1. The desired neigh-
borhood of the voxel is generated by adding the voxels in
ηfcp−1

[
υ(ti, s̄j)

]
to the functionally nearest neighbour of ηfcp ,

as follows;

ηfc1

[
υ(ti, s̄j)

]
=
{
υ(ti, s̄k) ∪ ηfcp−1υ(ti, s̄j) : max(ρjk),

υ(ti, s̄j) ∈ ηfcp−1

[
υ(ti, s̄j)

]c }
,

(5)

Eq (5) defines a set of voxels with cardinality p, whose
elements are the p number of functionally closest voxels to



TABLE I: Best parameters sellected for classifiers, using cross validation technique. * indicates Gaussian Kernel

SVM SVM* k-NN
C C γ k

Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2
MVPA [1] 4 2 4 8 1 2 5 7

LRF 8 2 8 8 0.25 0.125 4 3
FC-LRF 2 8 8 0.125 8 0.25 4 3

TABLE II: Optimal p values for the classifiers

SVM SVM* k-NN NB
Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

LRF 3 9 7 6 5 3 11 5
FC-LRF 6 8 10 2 9 7 8 8

the voxel υ(ti, s̄j). These closest voxels are used to form a
mesh around the voxel υ(ti, s̄j).

IV. EXPERIMENTS FOR OBJECT CLASSIFICATION

In the experiments, brain activities of participants were
recorded while images, selected from pre-defined two se-
mantic categories which are flower and bird, were presented
for 4 seconds each. A total of 30 images were shown for
each of the object types. Four sample images are shown in
Fig. 1.

Fig. 1: Sample images from the object dataset.

After the presentation of each study list, the participant
solves mathematical problems and following this delay pe-
riod, decides whether a probe word matches one of the
members of the study list (“old” or “new”). Employing this
12-second delay period allows independent assessment of
encoding related (i.e. study list period) brain activation from
retrieval related (i.e. during the test probe) activity patterns.
With this approach, one can test whether it is possible to
identify and differentiate semantic categories of information
that is represented in the brain at a given time based on
distributed patterns of brain activity associated with and
during cognitive processing. We used the neural activation
patterns collected during encoding and retrieval phases, to
train and test the classifier to predict the semantic categories
of the objects.

The collected fMRI data was processed by SPM toolbox
to make the standard alignments and normalizations. In
the classical MVPA experiments, multiple voxel intensity
values are concatenated under a feature vector for each time
instance, corresponding to a sample. Then, a classifier is
trained and tested with these features. For the suggested
mesh learning method, first, spatial and functional meshes are
formed. Then, the edge weights are estimated by minimizing
the error variance of (1). Finally, for the spatially connected

meshes, LRF vectors and for functionally connected meshes,
FC-LRF vectors are formed and fed to SVM, k-NN and
Naive Bayes classifiers. Our dataset consists of 30 samples
in each of 2 semantic categories. We run the experiments
in two parts, where each part consists of 15 samples for
each class with a total of 30 samples. Our region of interest
consists of 58667 voxels covering the whole brain. k-nearest
neighbor (k-NN), Support Vector Machine (SVM) and Naive
Bayes methods are used as classifiers in the experiments.
The k value of k-NN and the C (cost) parameter of the
SVM classifier which implements a linear Kernel and an
additional γ (variance) parameter of a Gaussian Kernel, are
selected using k-fold cross-validation [19] and grid search
[20] in the training set.

In order to optimize the parameters for the classifiers in
the training phase, 3-fold cross-validation is performed. For
SVM, all parameters are optimized with values which are
powers of 2. The C parameter is optimized by searching in
the interval [0.5, 8], where the γ parameter of the Gaussian
kernel is searched in the interval [0.125, 2]. For k-NN, k
parameter is optimized in the interval [2, 12]. We observed
that beyond these boundaries the validation performances re-
main stable and do not change considerably. The best values
obtained by the cross validation applied on the training data
are presented in Table I, the first row corresponds to the
analysis presented in [1]. Finally, the mesh size p, which
gives the highest performances for the classifiers are given
in Table II, where these values have a range of [2, 12]. An
example of change of test accuracies according to the p value
for the SVM with the linear Kernel is given in Fig. 2.

The results given in Table III show the employment of
the MVPA [1], LRF and the FC-LRF in the Mesh Learning
algorithm. The classification performances on the (gener-
ated) data using Mesh Learning are higher than that of the
performances using raw features (without LRF) of 58667
voxels and the results are promising. The main reason behind
this is the extraction of the relationships among signals
measured at the voxels in brain which proves itself to have a
more discriminative power for the classification of the object
categories. Finally, the employment of the FC-LRF increased
the performances even further by considering functional
relations between the voxels in anatomically unconnected
areas.



TABLE III: Test accuracies of classifiers, * indicates Gaussian Kernel

SVM SVM* k-NN NB
Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

MVPA [1] 53% 83% 53% 50% 53% 57% 53% 50%
LRF 60% 73% 60% 57% 50% 60% 63% 57%

FC-LRF 73% 90% 67% 83% 67% 70% 70% 57%

Fig. 2: Test accuracy vs p in the classification using FC-LRF
with SVM with Linear Kernel, Run1

V. CONCLUSION

In this paper, we employed Mesh Learning for pattern
analysis of neuroimaging data during cognitive processing
which is object recognition and tested the models perfor-
mance for the object category prediction. The results of ex-
periments indicate that the Mesh Model effectively improved
the classification performances of machine learning methods,
hence having a higher discriminative power compared to
the standard MVPA analysis using voxel intensity values,
proving itself to be a useful algorithm for object recognition
during cognitive processing. In addition, the results suggest
that also for object recognition, the neural activities are
widely distributed because of the performance boost of FC-
LRF over LRF. Finally, more experiments should be per-
formed to generalize the performance of the Mesh Learning
model in a diverse range of cognitive processes.
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