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Abstract² In this study, we propose a new method for 

analyzing and representing the distribution of discriminative 

information for data acquired via functional Magnetic 

Resonance Imaging (fMRI). For this purpose, we form a 

spatially local mesh with varying size, around each voxel, called 

the seed voxel. The relationship among each seed voxel and its 

neighbors is estimated using a linear regression model by 

minimizing the square error. Then, we estimate the optimal 

mesh size that represents the connections among each seed 

voxel and its surroundings E\� PLQLPL]LQJ� $NDLNH¶V� )LQDO�

Prediction Error (FPE) with respect to the mesh size. The 

degree of locality is represented by the optimum mesh size. Our 

results indicate that the local mesh size with the highest 

discriminative power varies across individual participants.  The 

proposed method was tested on an fMRI study consisting of 

item recognition (IR) and judgment of recency (JOR) tasks. 

For each participant, the estimated arc weights of each local 

mesh with different mesh size are used to classify the type of 

memory judgment (i.e.IR or JOR). Classification accuracy for 

each participant was derived using k-Nearest Neighbor (k-NN) 

method. The results indicate that the proposed local mesh 

model with optimal mesh size can successfully represent 

discriminative information for neuroimaging data.  

I. INTRODUCTION 

How information is represented and distributed in the 
brain is a fundamental question in cognitive neuroscience.  In 
order to address this question, functional Magnetic 
Resonance Imaging (fMRI) has been widely used as a 
powerful tool. A recently growing method [1-7], Multivariate 
pattern analysis (MVPA) aims to extract discriminative 
information based on distributed patterns of activation. In this 
approach, neural activation of multiple voxels is used as a 
feature vector to train a machine learning algorithm. The 
performance of this algorithm indicates the accuracy of the 
model to represent the underlying cognitive process. This 
approach is also referred to as decoding or classification [8-
10].   

Generally, in MVPA approaches, after the raw data is 
preprocessed, the voxel intensity values are fed to one of the 
well-known classifiers or clustering algorithms, such as 
Neural Networks, Bayesian classifiers, Kernel machines or 
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Ensemble classifiers [11]. Since MVPA methods focus on 
high spatial-frequency patterns of response, the methods are 
conducted within individual SDUWLFLSDQW¶V� GDWD� [12]. The 
general trend is to feed the multiple voxel intensity values to 
a classifier for each participant, where the voxel intensity 
values are acquired after the same pre-processing steps. 

In this study, we propose a new method to investigate the 
distributed nature of discriminative information in the human 
brain. Instead of using a vector of multiple voxel intensity 
values, we use a local mesh model that represents the spatial 
relationship among voxels, which has been previously shown 
to have more discriminative power than voxel intensities in 
[11]. A local mesh is formed around each voxel (called seed 
voxel of the local mesh) with its spatially closest voxels. The 
arc weights of the local mesh, that represent the relationship 
between the seed voxel and its neighboring voxels, are 
estimated using a linear regression model for each mesh. The 
error coming from this regression varies as a function of the 
selected number of neighboring voxels in the local mesh (i.e. 
the mesh size) for each participant. This error plays an 
important role in determining the optimal mesh size across 
individual participants. In this study, we determine the mesh 
size by employing the error variance in an information 
theoretic criterion [13]. This criterion, namely the Final 
Prediction Error (FPE), is a function of the error variance, 
model order and number of samples. By adopting the 
$NDLNH¶V� )LQDO�3UHGLFWLRQ�(UURU� �)PE) criterion to our local 
mesh model, we compute the optimum mesh size, which 
corresponds to the order of the linear regression model [13, 
14]. In the proposed study, the mesh size is estimated by 
minimizing the FPE with respect to the order of a regressor. 
The minimum of the FPE that determines the optimum local 
mesh size is unique for each individual participant and does 
not differ for experimental categories. Furthermore, the 
suggested local mesh model with varying mesh size provides 
an effective tool to represent the voxel connectivity of the 
fMRI measurements.  

In the current study, 8 participants completed two 
memory tasks, namely item recognition (IR) and judgment of 
recency (JOR). In each task, participants studied five 
consonants and made a memory decision to two consonants 
probes. In IR, participants were asked to indicate the letter 
that was in the study list. In JOR, task they were asked to 
indicates the letter that was presented more recently in the 
study list. During these operations, neural activation was 
recorded using fMRI. The local mesh model was employed 
on the acquired data, and classification accuracy for 
discriminating the IR and JOR judgments was used to test the 
feasibility of the proposed method.  
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To our knowledge, this is the first study of using final 
prediction errors in a space-domain with the local relational 
structures. The classification accuracy corresponding to 
optimum mesh size is compared with both the average 
accuracy of different mesh sizes and the accuracy of classical 
MVPA methods, suggested in [1], [2] and [3]. The simplicity 
and efficiency of the proposed method has the potential to be 
used in future brain decoding research. 

II. MATERIALS AND METHODS 

A. fMRI experiment and pre-processing 

In the fMRI experiment, neural activation is examined in 
two working memory tasks, namely item recognition and 
judgment of recency (JOR) [15]. For both tasks, participants 
studied a list of five consonants, presented sequentially for 
500 ms each. Following the study list, a visual mask/ task cue 
was shown for 750 ms, indicating the upcoming memory 
judgment (IR or JOR). Then, participants were presented 
with two probe consonants. In JOR trials, both of these 
consonants are from the current list and the participants are 
expected to select the consonant which was presented more 
recently in the study list. In IR trials, one of these consonants 
are from the current list where the other one is new, and the 
participants are expected to indicate the one belonging to the 
study list (see; Fig.1).  Participants had 3 sec to respond. 

Image processing and data analysis were performed using 
SPM2 (www.fil.ion.ucl.ac.uk/spm/). In the preprocessing 
phase first, slice acquisition timing across slices are 
corrected. Next, images are realigned to the first volume in 
each run in order to correct for head movement. Functional 
and anatomical images are then normalized to a standard 
template EPI. Finally, images are smoothened using a 6-mm 
full-width half-maximum isotropic Gaussian kernel. 

B. Representation of the local connectivity of Voxels: Local 

Relational Features (LRF) 

In this study, at each time instant�PÜ, E L sátá å á0, the 

intensity values of voxels íkPÜ á OÝo at locations� OÝ, F L
sátá å á/ are measured and each �PÜ  is associated with a task 
label ?Ü where 0 represents the number of time samples and 
/ represents the number of voxels. In the current 
experiment, the task label is either IR or JOR. fMRI 
measurements are represented in an 0T/ matrix, where 0 is 
the number of time samples and / is the number of voxels. 
Since the voxels are distributed in the brain in three 
dimensions, their location OÝ is a three dimensional vector, 

where OÝ L kTÝ á UÝ á VÝo. 
In the proposed local mesh model, there are two major 

approaches to select the p-neighborhood ßã of each voxel 

kPÜ á OÝo . In the first approach a neighborhood system is 

defined spatially [11] where the p-nearest neighbors are 
selected as the ones whose Euclidean distance of voxel 
coordinates are the smallest to the seed voxel.  The second 
approach is to define functional neighborhood [16], where 
the p-nearest neighbors are selected based on the functional 
connectivity between the surrounding voxels and the seed 
voxel. A popular functional connectivity measure is Pearson 
correlation as defined in [16]. 

 

Fig. 1, taken from Oztekin et al., 2009. A sample sequence for an 
experimental trial composed of item recognition (IR) and judgment of 
recency (JOR) tasks. Each trial starts with a fixation point and then a study 
list of five letters is presented for both tasks. After the presentation of study 
list, the participants are shown a visual mask that cued either an IR or JOR 
trial. Then two test probes are presented, and participants executed either an 
IR (shown on panel A) or a JOR (shown on panel B) judgment. 

In the local mesh model, a seed voxel is connected to its p-

neighbors <í:PÜá OÞ;=Þ@5ã
  with arc weights =ÜáÝáÞ (Fig. 2) and 

the L value is called the mesh size.   

 

Fig. 2. Mesh diagram which represents a seed voxel í:PÜ á OÝ; and its p-

nearest neighbors  <í:PÜ á OÞ;=Þ@5ã   at a time instant PÜ. The estimated arc 

weights =ÜáÝáÞ represent the relationship between the seed voxel and its 

neighbors. 

 These arc weights are estimated using the linear regression 
equation: 

íkPÜ á OÝo L Ì =ÜáÝáÞqÖÐ�Û
í:PÜá OÞ; E ÝÜáÝáã . (1) 

In (1), arc weights are estimated by minimizing the 

squared error BÜáÝáã
6 with Levinson ± Durbin recursion [17]. 

These arc weights =ÜáÝáÞ represent the relationship between a 

voxel íkPÜ á OÝo  and the voxels in ßã. For each voxel, at each 

�PÜ, arc weights =ÜáÝáÞ are estimated and form a sTL mesh arc 

vector  =$ÜáÝ L >=ÜáÝá5�=ÜáÝá6å �=ÜáÝáã?. Then, each voxel íkPÜ á OÝo  
is represented with this mesh arc vector =$ÜáÝ and to represent a 

voxel, its relationships between its neighboring voxels are 
used instead of its own intensity value. During this operation, 
all the voxels are used as seed voxels once and around each 
of them a local mesh is created. Combining the mesh arc 
vectors for all time instants, an 0TL mesh arc vector #Ý L
>=$5áÝ�=$6áÝ å �=$ÇáÝ?Í is constructed. Finally, by combining #Ý 



  

of each voxel, an N by pM feature matrix ( L >#5�#6å �#Æ? 
is constructed. 

C. $NDLNH¶V�)LQDO�3UHGLFWLRQ�(UURU��)3(� 

One of the crucial steps in designing the proposed local 
mesh model is to determine an optimal mesh size p which 
maximizes the accuracy of the classifier. The size of the 
local mesh also represents the degree of connections of a 
voxel with its neighbors. In this study, we adopt an 
information theoretic criterion suggested by Akaike in [13]. 

 In our proposed method, first we compute the squared 
error at each time instant PÜ, for each mesh and for each 
mesh size p by using : 

ÝÜáÝáã
6 L líkPÜ á OÝo F Ã =ÜáÝáÞæÖ"�Û:æÕ; í:PÜ á OÞ;p

6

 . (2) 

 By taking the average of squared errors for all time instants 

PÜ and for all seed voxels íkPÜ á OÝo, we approximate the 

variance of the error for the mesh size L as follows : 

'kÝã% 6o � 5

Ç

5

Æ
Ã Ã ÝÜáÝáã

6Æ
Ý@5

Ç
Ü@5  , (3) 

where ':®; is the expectation operator. This expected squared 
error is used to determine WKH� $NDLNH¶V� )LQDO� 3UHGLFWLRQ�
Error, FPE, in space-domain such that: 

(2'ã L 'kÝL% to @Æ>ã>5Æ?ã?5
A . (4) 

 Note that in the above formulation, the first term 'kÝã% 6o is 
a monotonically decreasing function of p, whereas the second 
term is a monotonically increasing function. Therefore, FPE 
is a convex function in terms of p and has a unique minimum. 
$FFRUGLQJ� WR� $NDLNH¶V� SLRQHHULQJ� ZRUN� >��@�� WKLV� IXQFWLRQ�
gives us a measure about the model quality. Minimizing FPE 
with respect to the model order L gives us the optimum mesh 

size. In this study,  (2'ã is computed for various mesh sizes 

and the p value which minimizes (2'ã criterion is selected.  

III. RESULTS 

The proposed method was tested on each of the eight 
SDUWLFLSDQWV¶� GDWD. (DFK� SDUWLFLSDQW¶V� GDWD� FRQVLVWV� RI 240 
training samples (120 samples for both IR task and JOR task) 
and 80 test samples (40 samples for both IR task and JOR 
task).  Our region of interest (ROI) consists of 2030 voxels 
that were identified from a whole-brain voxel-wise contrast 
assessing the active voxels during the experiment, using a 
threshold of p < .001, uncorrected. Dimension of features 
increases linearly with the increase in the mesh size p. 
Accordingly, for each mesh size p, the number of features 
used in classification is p x 2030. 

The optimum mesh size for each participant is estimated 
by computing the FPE criterion with the varying p value in 
the interval [2-25] in both training and test data. It is 
observed that the minimum FPE value takes place in this 
interval. Moreover for each p value, extracted arc weight 
vectors are used in classification and the classification 
accuracies are computed using the k-NN method. The value 
of k is estimated via cross validation in the training set for 

each participant. Table 1 presents the results for one 
participant. Classification performances presented in Table 1 
indicate that the mesh sizes in the interval [2-25], FPE 
decreases to some point (where p = 23) and then starts to 
increase. As a result, our method estimates the mesh size as 
23. The corresponding classification accuracy is 67% which 
represents the average performance computed across a range 
of mesh sizes. The average accuracy of the classifiers for the 
mesh sizes [2-25] is 61%. These accuracies might seem low 
for a 2-class classification task. However, it is important to 
note that training (i.e. encoding) phases are identical across 
the IR and JOR tasks, and participants were only cued about 
which retrieval operation they should perform after the study 
phase. 

TABLE I.  FPE AND CLASSIFICATION ACCURACY FOR DIFFERENT 

MESH SIZES 

Mesh 

Size 
FPE 

Classification 
accuracy with 

arc vectors 

 
Mesh 

Size 
FPE 

Classification 
accuracy with 

arc vectors 

2 95,57 63%  14 78,78 63% 

3 91,99 63%  15 78,83 61% 

4 86,76 63%  16 78,40 58% 

5 86,25 62%  17 78,59 58% 

6 85,55 57%  18 78,33 59% 

7 82,96 65%  19 78,24 58% 

8 81,87 65%  20 77,97 59% 

9 80,59 65%  21 78,02 57% 

10 80,05 61%  22 77,94 57% 

11 79,94 62%  23 77,63 67% 

12 79,34 58%  24 77,76 61% 

13 78,99 62%  25 77,82 57% 

 

For each participant, the average accuracy is computed in 
an interval [2-25] of mesh size with the same manner. 
Furthermore, the features obtained after the pre-processing 
step are directly fed to the classifier and the classification 
accuracies are computed to show that using arc vectors 
improves the performance on the data compared to the 
classical MVPA methods. 

TABLE II.  CLASSIFICATION ACCURACIES FOR ESTIMATED MESH SIZE 

AND CLASSICAL MVPA METHOD 

Participants 

Estimated 

optimum 

mesh size 

k-NN Accuracy 

Classical 

MVPA 

method 

Classification 

with arc 

vectors using 

estimated  

mesh size 

Average 

accuracy of 

the 

classifiers 

for p ë [2-

25] 

Participant 1 17 58% 66% 61% 

Participant 2 23 58% 67% 61% 

Participant 3 24 62% 60% 61% 

Participant 4 25 53% 58% 57% 

Participant 5 23 54% 59% 57% 

Participant 6 16 53% 59% 57% 

Participant 7 25 57% 56% 55% 

Participant 8 17 57% 58% 57% 

 



  

Table II provides a comparison across the classification 
accuracy of the proposed method and classical MVPA 
methods. For each participant, the estimated mesh size differs 
in an interval [16 - 25] where these values correspond to the 
minimum of FPE on test data. When the arc vectors of the 
estimated mesh size are used in classification, 6 participants 
among 8 give 1%-9% increase in the classification 
performance, but for two of them, the performance decreases 
1%-2% compared to the classical MVPA method.  

In addition, the average accuracies for different mesh 
sizes selected in the interval [2-25], are provided in Table II 
for each participant. We observe that the accuracy 
corresponding to the estimated mesh sizes are always higher 
than that of the average accuracy over all mesh sizes. Note 
that the proposed method cannot detect the mesh size with 
the highest accuracy for participant 3 and participant 7.  In 
Table III it can be seen that selecting the mesh size as 25 for 
participant 3 and 22 for participant 7 gives the highest 
accuracy and is better than the accuracy of classical MVPA 
approach.  

TABLE III.  CLASSIFICATION ACCURACIES FOR MESH SIZES WITH BEST 

ACCURACIES AND CLASSICAL MVPA METHOD 

Participants 

Mesh 

size that 
gives best 

accuracy  

k-NN Accuracy 

Classical 
MVPA 

method 

Classification with arc 
vectors using mesh size that 

gives the best accuracy 

Participant 3 25 62% 65% 

Participant 7 22 57% 58% 

 

Finally, we investigate the effect of the mesh sizes on the 

classification accuracy of a specific task. For this purpose, 

we estimate the optimum mesh size for each task, 

minimizing the FPE measure of (4), using only the samples 

which belong to the same class. Surprisingly, we observe 

that for this particular experimental set-up, the optimal p 

value for both classes remain the same as the optimal value 

computed for each participant. Therefore, we conclude that 

although distribution of information changes from 

participant to participant, it does not change from class to 

class.  

IV. CONCLUSION 

In this paper we propose a new machine learning 
approach to explore how information is represented in the 
brain for during cognitive processing.  Our method 
introduces a local mesh model of varying size to represent 
each voxel by its linear relations with the neighboring voxels. 
The size of the local meshes is computed by minimizing an 
information theoretic criterion, namely Final Prediction Error 
(FPE). Since the optimum mesh size greatly differs from 
participant to participant, our approach provides a generic 
method to select the optimum mesh size. We showed that 
FPE, which depends on the number of available samples, 
error variance and model order that comes from the linear 
regression function, can be used to determine the mesh size, 
and serve as an effective tool to model neural activity during 
cognitive processing. 

Our focus in this study was to find the optimum mesh 
sizes for different participants to investigate the participant 

dependency on the underlying cognitive task. We observed 
that the connectivity degrees of voxels highly depend on the 
individual participants and it is not possible to use a generic p 
value which is valid for all the participants. The results on 8 
participants show that the FPE criterion is quite promising, 
where for 6 of 8 participants (75%) it is able to detect the 
optimum mesh size. Although it fails to detect the optimum 
mesh sizes in 2 participants, the classification accuracies 
differ only 1%-2% from the classical MVPA method. In this 
study, the proposed method is tested on item recognition (IR) 
and judgment of recency (JOR) tasks. In order to reach a 
more generic success using this method, further research will 
focus on implementing the same method for different 
cognitive tasks among multiple participants.  
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